Search

 
Showing

Narrow Your Results Use the filters below to refine your search

Document Type

  • (6,355)
  • (3,442)
  • (98)
  • (16)
  • (14)
  • Show More
Can't Find What You're Looking For?
Contact Customer Service

 
  • Monoclonal antibodies to individual tyrosine-phosphorylated protein substrates of oncogene-encoded tyrosine kinases. 2110361

    Cellular transformation by oncogenic retroviruses encoding protein tyrosine kinases coincides with the tyrosine-specific phosphorylation of multiple protein substrates. Previous studies have shown that tyrosine phosphorylation of a protein of 120 kDa, p120, correlated with src transformation in chicken embryo fibroblasts. Additionally, we previously identified two phosphotyrosine-containing cellular proteins, p130 and p110, that formed stable complexes with activated variants of pp60src, the src-encoded tyrosine kinase. To study transformation-relevant tyrosine kinase substrates, we have generated monoclonal antibodies to individual tyrosine phosphoproteins, including p130, p120, p110, and five additional phosphoproteins (p210, p125, p118, p85, and p185/p64). These antibodies detected several of the same tyrosine phosphoproteins in chicken embryo fibroblasts transformed by avian retroviruses Y73 and CT10, encoding the yes and crk oncogenes, respectively. Protein substrates in mouse, rat, hamster, and human cells overexpressing activated variants of chicken pp60src were also detected by several of the monoclonal antibodies.
    Document Type:
    Reference
    Product Catalog Number:
    Multiple
    Product Catalog Name:
    Multiple
  • Two monoclonal antibodies generated against human hsp60 show reactivity with synovial membranes of patients with juvenile chronic arthritis. 1316935

    Heat-shock proteins have been shown to be critical antigens in a number of autoimmune diseases. In human arthritis and in experimentally induced arthritis in animals, disease development was seen to coincide with development of immune reactivity directed against not only bacterial hsp60, but also against its mammalian homologue. We have developed murine monoclonal antibodies after immunization with recombinant human hsp60. Antibodies with unique specificity for mammalian hsp60, not crossreactive with the bacterial counterpart (LK1), and antibodies recognizing both human and bacterial hsp60 (LK2) were selected. Both antibodies recognize epitopes located between amino acid positions 383 and 447 of human hsp60. In immunogold electron microscopy, the mitochondrial localization of hsp60 in HepG2 cells was shown. Furthermore, both LK1 and LK2 showed a raised level of staining in light microscopy immunohistochemistry of synovial membranes in patients with juvenile chronic arthritis. The increased staining for LK1, with a unique specificity for mammalian hsp60, thus unequivocally demonstrates that this is due to a raised level of expression of endogenously produced host hsp60 and not to deposition of bacterial antigens.
    Document Type:
    Reference
    Product Catalog Number:
    MAB3514
    Product Catalog Name:
    Anti-Heat Shock Protein 60 Antibody, a.a. 383-447, clone LK1
  • Monoclonal antibodies specific for an acetylated form of alpha-tubulin recognize the antigen in cilia and flagella from a variety of organisms. 2415535

    Seven monoclonal antibodies raised against tubulin from the axonemes of sea urchin sperm flagella recognize an acetylated form of alpha-tubulin present in the axoneme of a variety of organisms. The antigen was not detected among soluble, cytoplasmic alpha-tubulin isoforms from a variety of cells. The specificity of the antibodies was determined by in vitro acetylation of sea urchin and Chlamydomonas cytoplasmic tubulins in crude extracts. Of all the acetylated polypeptides in the extracts, only alpha-tubulin became antigenic. Among Chlamydomonas tubulin isoforms, the antibodies recognize only the axonemal alpha-tubulin isoform acetylated in vivo on the epsilon-amino group of lysine(s) (L'Hernault, S.W., and J.L. Rosenbaum, 1985, Biochemistry, 24:473-478). The antibodies do not recognize unmodified axonemal alpha-tubulin, unassembled alpha-tubulin present in a flagellar matrix-plus-membrane fraction, or soluble, cytoplasmic alpha-tubulin from Chlamydomonas cell bodies. The antigen was found in protein fractions that contained axonemal microtubules from a variety of sources, including cilia from sea urchin blastulae and Tetrahymena, sperm and testis from Drosophila, and human sperm. In contrast, the antigen was not detected in preparations of soluble, cytoplasmic tubulin, which would not have contained tubulin from stable microtubule arrays such as centrioles, from unfertilized sea urchin eggs, Drosophila embryos, and HeLa cells. Although the acetylated alpha-tubulin recognized by the antibodies is present in axonemes from a variety of sources and may be necessary for axoneme formation, it is not found exclusively in any one subset of morphologically distinct axonemal microtubules. The antigen was found in similar proportions in fractions from sea urchin sperm axonemes enriched for central pair or outer doublet B or outer doublet A microtubules. Therefore the acetylation of alpha-tubulin does not provide the mechanism that specifies the structure of any one class of axonemal microtubules. Preliminary evidence indicates that acetylated alpha-tubulin is not restricted to the axoneme. The antibodies described in this report may allow us to deduce the role of tubulin acetylation in the structure and function of microtubules in vivo.
    Document Type:
    Reference
    Product Catalog Number:
    MABT868
    Product Catalog Name:
    Anti-acetyl-alpha tubulin Antibody, clone 6-11B-1
  • Monoclonal antibodies distinguish antigenically discrete neuronal types in the vertebrate central nervous system. 6959152

    Eight hundred hybridoma lines were generated from mice immunized with the fixed gray matter of cat spinal cord. Of these lines, 47 were positive when screened immunohistochemically against sections of the cat spinal cord. Twenty-nine lines secreted antibodies that bound to neuronal antigens. Of these, 16 bound to axons only, 8 bound to axons and cell bodies, and 5 bound to cell bodies only. Eighteen lines secreted antibodies that bound to glial cells. Five lines that secreted antibodies that intensely stained spinal cord sections were cloned and screened against other parts of the central nervous system. Each of these five antibodies bound to specific subsets of neurons. For example, in the spinal cord, one antibody (Cat-301) recognized a surface determinant on the dendrites and cell bodies of neurons that, in morphology and location, resemble long-distance projection neurons. A second antibody (Cat-201) recognized an antigen in axons and in the cytoplasm of neuronal cell bodies that may be a subset of those recognized by Cat-301. A third antibody (Cat-101) recognized only axons. The subcellular localization of the antigen recognized by each antibody is the same in all areas of the central nervous system we have examined. The fact that each of the antibodies described here has a restricted distribution in the central nervous system shows that there is a high degree of molecular diversity among vertebrate neurons and that hybridoma technology can be used to explore this diversity. This class of reagents should be a useful addition to the many established techniques for studying the organization of the vertebrate central nervous system.
    Document Type:
    Reference
    Product Catalog Number:
    MAB5284
    Product Catalog Name:
    Anti-Chondroitin Sulfate Proteoglycan Antibody, Brain (core protein), clone Cat-301
  • Neutralizing antibodies to interferon beta in multiple sclerosis: analytical evaluation for validation of a cytopathic effect assay. 17123498

    Recent guidelines have recommended the use of validated assays for the measurement of neutralizing antibodies (NABs) to interferon beta (IFNbeta) in patients with multiple sclerosis (MS). In an attempt of validation, we studied the analytical performance of a bioassay based on antiviral cytopathic effect (CPE) using WISH cells and the vesicular stomatitis virus (WISH/VSV CPE).
    Document Type:
    Reference
    Product Catalog Number:
    MAB416
    Product Catalog Name:
    Anti-Interferon-β Antibody, clone A1
  • Monoclonal antibodies to kinesin heavy and light chains stain vesicle-like structures, but not microtubules, in cultured cells. 2522455

    Kinesin, a microtubule-activated ATPase and putative motor protein for the transport of membrane-bounded organelles along microtubules, was purified from bovine brain and used as an immunogen for the production of murine monoclonal antibodies. Hybridoma lines that secreted five distinct antikinesin IgGs were cloned. Three of the antibodies reacted on immunoblots with the 124-kD heavy chain of kinesin, while the other two antibodies recognized the 64-kD light chain. When used for immunofluorescence microscopy, the antibodies stained punctate, cytoplasmic structures in a variety of cultured mammalian cell types. Consistent with the identification of these structures as membrane-bounded organelles was the observation that cells which had been extracted with Triton X-100 before fixation contained little or no immunoreactive material. Staining of microtubules in the interphase cytoplasm or mitotic spindle was never observed, nor were associated structures, such as centrosomes and primary cilia, labeled by any of the antibodies. Nevertheless, in double-labeling experiments using antibodies to kinesin and tubulin, kinesin-containing particles were most abundant in regions where microtubules were most highly concentrated and the particles often appeared to be aligned on microtubules. These results constitute the first direct evidence for the association of kinesin with membrane-bounded organelles, and suggest a molecular mechanism for organelle motility based on transient interactions of organelle-bound kinesin with the microtubule surface.
    Document Type:
    Reference
    Product Catalog Number:
    Multiple
    Product Catalog Name:
    Multiple