Millipore Sigma Vibrant Logo
 

cell+culture+systems+or+protein+sample+preparation+or+chromatography+sample+preparation


201 Results Advanced Search  
Showing
Products (0)
Documents (95)

Search Within Add keywords to narrow your search results

Narrow Your Results Use the filters below to refine your search

Document Type

  • (83)
  • (12)
Can't Find What You're Looking For?
Contact Customer Service

 
  • Apoptosis-associated microRNAs are modulated in mouse, rat and human neural differentiation. 20868483

    MicroRNAs (miRs or miRNAs) regulate several biological processes in the cell. However, evidence for miRNAs that control the differentiation program of specific neural cell types has been elusive. Recently, we have shown that apoptosis-associated factors, such as p53 and caspases participate in the differentiation process of mouse neural stem (NS) cells. To identify apoptosis-associated miRNAs that might play a role in neuronal development, we performed global miRNA expression profiling experiments in NS cells. Next, we characterized the expression of proapoptotic miRNAs, including miR-16, let-7a and miR-34a in distinct models of neural differentiation, including mouse embryonic stem cells, PC12 and NT2N cells. In addition, the expression of antiapoptotic miR-19a and 20a was also evaluated.The expression of miR-16, let-7a and miR-34a was consistently upregulated in neural differentiation models. In contrast, expression of miR-19a and miR-20a was downregulated in mouse NS cell differentiation. Importantly, differential expression of specific apoptosis-related miRNAs was not associated with increased cell death. Overexpression of miR-34a increased the proportion of postmitotic neurons of mouse NS cells.In conclusion, the identification of miR-16, let-7a and miR-34a, whose expression patterns are conserved in mouse, rat and human neural differentiation, implicates these specific miRNAs in mammalian neuronal development. The results provide new insights into the regulation of neuronal differentiation by apoptosis-associated miRNAs.
    Document Type:
    Reference
    Product Catalog Number:
    Multiple
    Product Catalog Name:
    Multiple
  • BMP4 Signaling Acts via dual-specificity phosphatase 9 to control ERK activity in mouse embryonic stem cells. 22305567

    Extrinsic BMP and LIF signaling collaboratively maintain mouse embryonic stem cell (ESC) pluripotency, whereas appropriate ERK activity is essential for ESC fate commitment. However, how the extrinsic signals restrain appropriate ERK activity remains elusive. Here, we show that, whereas LIF sustains relatively high ERK activity, BMP4 can steadily attenuate ERK activity by upregulating ERK-specific dual-specificity phosphatase 9 (DUSP9). This upregulation requires Smad1/5 and Smad4 and specifically occurs to DUSP9, but not other DUSPs, and only in ESCs. Through DUSP9-mediated inhibition of ERK activity, BMP signaling reinforces the self-renewal status of mouse ESCs together with LIF. Upon LIF withdrawal, ESCs spontaneously undergo neural differentiation, during which process DUSP9 can partially mediate BMP inhibition on neural commitment. Collectively, our findings identify DUSP9 as a critical mediator of BMP signaling to control appropriate ERK activity critical for ESC fate determination.
    Document Type:
    Reference
    Product Catalog Number:
    SCR004
    Product Catalog Name:
    Alkaline Phosphatase Detection Kit
  • BMP4 sufficiency to induce choroid plexus epithelial fate from embryonic stem cell-derived neuroepithelial progenitors. 23136431

    Choroid plexus epithelial cells (CPECs) have essential developmental and homeostatic roles related to the CSF and blood-CSF barrier they produce. Accordingly, CPEC dysfunction has been implicated in many neurological disorders, such as Alzheimer's disease, and transplant studies have provided proof-of-concept for CPEC-based therapies. However, such therapies have been hindered by the inability to expand or generate CPECs in culture. During development, CPECs differentiate from preneurogenic neuroepithelial cells and require bone morphogenetic protein (BMP) signaling, but whether BMPs suffice for CPEC induction is unknown. Here we provide evidence for BMP4 sufficiency to induce CPEC fate from neural progenitors derived from mouse embryonic stem cells (ESCs). CPEC specification by BMP4 was restricted to an early time period after neural induction in culture, with peak CPEC competency correlating to neuroepithelial cells rather than radial glia. In addition to molecular, cellular, and ultrastructural criteria, derived CPECs (dCPECs) had functions that were indistinguishable from primary CPECs, including self-assembly into secretory vesicles and integration into endogenous choroid plexus epithelium following intraventricular injection. We then used BMP4 to generate dCPECs from human ESC-derived neuroepithelial cells. These findings demonstrate BMP4 sufficiency to instruct CPEC fate, expand the repertoire of stem cell-derived neural derivatives in culture, and herald dCPEC-based therapeutic applications aimed at the unique interface between blood, CSF, and brain governed by CPECs.
    Document Type:
    Reference
    Product Catalog Number:
    AB2219
    Product Catalog Name:
    Anti-Aquaporin 1 Antibody
  • Bone marrow-derived stromal cells can express neuronal markers by DHA/GPR40 signaling. 20592462

    The exact origin of neural stem cells in the adult neurogenesis niche remains unknown. Our previous studies, however, indicated an implication of both bone marrow cells as potential progenitors of hippocampal newborn neurons and polyunsaturated fatty acids as ligands of G protein-coupled receptor 40 (GPR40) signaling. Here, we aimed at studying whether bone marrow-derived stromal cells (BMSC) treated by docosahexaenoic acid (DHA) can express neuronal markers in vitro. We focused on implication of DHA/GPR40 signaling for the expression of neural markers in clonally-expanded BMSC from young macaque monkeys. Cell cycle analysis revealed that the DHA plus bFGF treatment induced a decrease of BMSC proliferation and increased the cells in the G0 resting phase. The transitions from nestin-positive progenitors via immature neuronal (beta III-tubulin-positive) to mature neuronal (NF-M and Map2-positive) phenotypes were examined using RT-PCR, Western blot and immunocytochemistry. We detected a significant increase of GPR40 mRNA and protein expression after bFGF induction, being compared with the untreated BMSC. Addition of DHA, a representative GPR40 ligand, led to a significant down-regulation of GPR40, i.e., G protein-coupled receptor-specific internalization, with a subsequent upregulation of neuronal markers such as beta III-tubulin, NF-M and Map2. These data altogether suggest that adult primate BMSC can express neuronal markers with the aid of DHA/GPR40 signaling.
    Document Type:
    Reference
    Product Catalog Number:
    AB5622
    Product Catalog Name:
    Anti-Microtubule-Associated Protein 2 (MAP2) Antibody
  • c-myc and N-myc promote active stem cell metabolism and cycling as architects of the developing brain. 20651942

    myc genes are associated with a wide variety of human cancers including most types of nervous system tumors. While the mechanisms by which myc overexpression causes tumorigenesis are multifaceted and have yet to be clearly elucidated, they are at least in part related to endogenous myc function in normal cells. Knockout (KO) of either c-myc or N-myc genes in neural stem and precursor cells (NSC) driven by nestin-cre impairs mouse brain growth and mutation of N-myc also causes microcephaly in humans in Feingold Syndrome. To further define myc function in NSC and nervous system development, we created a double KO (DKO) for c- and N-myc using nestin-cre. The DKO mice display profoundly impaired overall brain growth associated with decreased cell cycling and migration of NSC, which are strikingly decreased in number. The DKO brain also exhibits specific changes in gene expression including downregulation of genes involved in protein and nucleotide metabolism, mitosis, and chromatin structure as well as upregulation of genes associated with differentiation. Together these data support a model of nervous system tumorigenesis in which excess myc aberrantly locks in a developmentally active chromatin state characterized by overactive cell cycling, and metabolism as well as blocked differentiation.
    Document Type:
    Reference
    Product Catalog Number:
    MAB3424
    Product Catalog Name:
    Anti-BrdU Antibody, clone AH4H7-1 / 131-14871
  • CD133-enriched Xeno-Free human embryonic-derived neural stem cells expand rapidly in culture and do not form teratomas in immunodeficient mice. 25082219

    Common methods for the generation of human embryonic-derived neural stem cells (hNSCs) result in cells with potentially compromised safety profiles due to maintenance of cells in conditions containing non-human proteins (e.g. in bovine serum or on mouse fibroblast feeders). Additionally, sufficient expansion of resulting hNSCs for scaling out or up in a clinically relevant time frame has proven to be difficult. Here, we report a strategy that produces hNSCs in completely "Xeno-Free" culture conditions. Furthermore, we have enriched the hNSCs for the cell surface marker CD133 via magnetic sorting, which has led to an increase in the expansion rate and neuronal fate specification of the hNSCs in vitro. Critically, we have also confirmed neural lineage specificity upon sorted hNSC transplantation into the immunodeficient NOD-scid mouse brain. The future use or adaptation of these protocols has the potential to better facilitate the advancement of pre-clinical strategies from the bench to the bedside.
    Document Type:
    Reference
    Product Catalog Number:
    AB5603A4
    Product Catalog Name:
    Anti-Sox2, Alexa Fluor® 488 Conjugate Antibody
  • Cerebellar stem cells act as medulloblastoma-initiating cells in a mouse model and a neural stem cell signature characterizes a subset of human medulloblastomas. 20062081

    Cells with stem cell properties have been isolated from various areas of the postnatal mammalian brain, most recently from the postnatal mouse cerebellum. We show here that inactivation of the tumor suppressor genes Rb and p53 in these endogenous neural stem cells induced deregulated proliferation and resistance to apoptosis in vitro. Moreover, injection of these cells into mice formed medulloblastomas. Medulloblastomas are the most common malignant brain tumors of childhood, and despite recent advances in treatment they are associated with high morbidity and mortality. They are highly heterogeneous tumors characterized by a diverse genetic make-up and expression profile as well as variable prognosis. Here, we describe a novel ontogenetic pathway of medulloblastoma that significantly contributes to understanding their heterogeneity. Experimental medulloblastomas originating from neural stem cells preferentially expressed stem cell markers Nestin, Sox2 and Sox9, which were not expressed in medulloblastomas originating from granule-cell-restricted progenitors. Furthermore, the expression of these markers identified a subset of human medulloblastomas associated with a poorer clinical outcome.
    Document Type:
    Reference
    Product Catalog Number:
    AB5603
    Product Catalog Name:
    Anti-Sox2 Antibody
  • Chd1 regulates open chromatin and pluripotency of embryonic stem cells. 19587682

    An open chromatin largely devoid of heterochromatin is a hallmark of stem cells. It remains unknown whether an open chromatin is necessary for the differentiation potential of stem cells, and which molecules are needed to maintain open chromatin. Here we show that the chromatin remodelling factor Chd1 is required to maintain the open chromatin of pluripotent mouse embryonic stem cells. Chd1 is a euchromatin protein that associates with the promoters of active genes, and downregulation of Chd1 leads to accumulation of heterochromatin. Chd1-deficient embryonic stem cells are no longer pluripotent, because they are incapable of giving rise to primitive endoderm and have a high propensity for neural differentiation. Furthermore, Chd1 is required for efficient reprogramming of fibroblasts to the pluripotent stem cell state. Our results indicate that Chd1 is essential for open chromatin and pluripotency of embryonic stem cells, and for somatic cell reprogramming to the pluripotent state.
    Document Type:
    Reference
    Product Catalog Number:
    Multiple
    Product Catalog Name:
    Multiple
  • Circumventricular organs: a novel site of neural stem cells in the adult brain. 19409493

    Neurogenesis in the adult mammalian nervous system is now well established in the subventricular zone of the anterolateral ventricle and subgranular zone of the hippocampus. In these regions, neurons are thought to arise from neural stem cells, identified by their expression of specific intermediate filament proteins (nestin, vimentin, GFAP) and transcription factors (Sox2). In the present study, we show that in adult rat and mouse, the circumventricular organs (CVOs) are rich in nestin+, GFAP+, vimentin+ cells which express Sox2 and the cell cycle-regulating protein Ki67. In culture, these cells proliferate as neurospheres and express neuronal (doublecortin+, beta-tubulin III+) and glial (S100beta+, GFAP+, RIP+) phenotypic traits. Further, our in vivo studies using bromodeoxyuridine show that CVO cells proliferate and undergo constitutive neurogenesis and gliogenesis. These findings suggest that CVOs may constitute a heretofore unknown source of stem/progenitor cells, capable of giving rise to new neurons and/or glia in the adult brain.
    Document Type:
    Reference
    Product Catalog Number:
    Multiple
    Product Catalog Name:
    Multiple
  • Differential distribution of stem cells in the auditory and vestibular organs of the inner ear. 17171473

    The adult mammalian cochlea lacks regenerative capacity, which is the main reason for the permanence of hearing loss. Vestibular organs, in contrast, replace a small number of lost hair cells. The reason for this difference is unknown. In this work we show isolation of sphere-forming stem cells from the early postnatal organ of Corti, vestibular sensory epithelia, the spiral ganglion, and the stria vascularis. Organ of Corti and vestibular sensory epithelial stem cells give rise to cells that express multiple hair cell markers and express functional ion channels reminiscent of nascent hair cells. Spiral ganglion stem cells display features of neural stem cells and can give rise to neurons and glial cell types. We found that the ability for sphere formation in the mouse cochlea decreases about 100-fold during the second and third postnatal weeks; this decrease is substantially faster than the reduction of stem cells in vestibular organs, which maintain their stem cell population also at older ages. Coincidentally, the relative expression of developmental and progenitor cell markers in the cochlea decreases during the first 3 postnatal weeks, which is in sharp contrast to the vestibular system, where expression of progenitor cell markers remains constant or even increases during this period. Our findings indicate that the lack of regenerative capacity in the adult mammalian cochlea is either a result of an early postnatal loss of stem cells or diminishment of stem cell features of maturing cochlear cells.
    Document Type:
    Reference
    Product Catalog Number:
    MAB16985
    Product Catalog Name:
    Anti-MCAM Antibody, clone P1H12