Search

 
Showing

Narrow Your Results Use the filters below to refine your search

Document Type

  • (193)
  • (86)
  • (13)
  • (1)
Can't Find What You're Looking For?
Contact Customer Service

 
  • Loss of Bright/ARID3a function promotes developmental plasticity. 20680960

    B-cell regulator of immunoglobulin heavy chain transcription (Bright)/ARID3a, an A+T-rich interaction domain protein, was originally discovered in B lymphocyte lineage cells. However, expression patterns and high lethality levels in knockout mice suggested that it had additional functions. Three independent lines of evidence show that functional inhibition of Bright results in increased developmental plasticity. Bright-deficient cells from two mouse models expressed a number of pluripotency-associated gene products, expanded indefinitely, and spontaneously differentiated into cells of multiple lineages. Furthermore, direct knockdown of human Bright resulted in colonies capable of expressing multiple lineage markers. These data suggest that repression of this single molecule confers adult somatic cells with new developmental options.
    Document Type:
    Reference
    Product Catalog Number:
    Multiple
    Product Catalog Name:
    Multiple
  • Ethanol induces heterotopias in organotypic cultures of rat cerebral cortex. 15166098

    Abnormalities in the migration of cortical neurons to ectopic sites can be caused by prenatal exposure to ethanol. In extreme cases, cells migrate past the pial surface and form suprapial heterotopias or 'warts'. We used organotypic slice cultures from 17-day-old rat fetuses to examine structural and molecular changes that accompany wart formation. Cultures were exposed to ethanol (0, 200, 400 or 800 mg/dl) and maintained for 2-32 h. Fixed slices were sectioned and immunolabeled with antibodies directed against calretinin, reelin, nestin, GFAP, doublecortin, MAP-2 and NeuN. Ethanol promoted the widespread infiltration of the marginal zone (MZ) with neurons and the focal formation of warts. The appearance of warts is time- and concentration-dependent. Heterotopias comprised migrating neurons and were not detected in control slices. Warts were associated with breaches in the array of Cajal-Retzius cells and with translocation of reelin-immunoexpression from the MZ to the outer limit of the wart. Ethanol also altered the morphology of the radial glia. Thus, damage to the integrity of superficial cortex allows neurons to infiltrate the MZ, and if the pial-subpial glial barrier is also compromised these ectopic neurons can move beyond the normal cerebral limit to form a wart.
    Document Type:
    Reference
    Product Catalog Number:
    Multiple
    Product Catalog Name:
    Multiple
  • Maintenance and neuronal differentiation of chicken induced pluripotent stem-like cells. 25610469

    Pluripotent stem cells have the potential to become any cell in the adult body, including neurons and glia. Avian stem cells could be used to study questions, like vocal learning, that would be difficult to examine with traditional mouse models. Induced pluripotent stem cells (iPSCs) are differentiated cells that have been reprogrammed to a pluripotent stem cell state, usually using inducing genes or other molecules. We recently succeeded in generating avian iPSC-like cells using mammalian genes, overcoming a limitation in the generation and use of iPSCs in nonmammalian species (Rosselló et al., 2013). However, there were no established optimal cell culture conditions for avian iPSCs to establish long-term cell lines and thus to study neuronal differentiation in vitro. Here we present an efficient method of maintaining chicken iPSC-like cells and for differentiating them into action potential generating neurons.
    Document Type:
    Reference
    Product Catalog Number:
    Multiple
    Product Catalog Name:
    Multiple
  • Characterization of ectopic colonies that form in widespread areas of the nervous system with neural stem cell transplants into the site of a severe spinal cord injury. 25319698

    We reported previously the formation of ectopic colonies in widespread areas of the nervous system after transplantation of fetal neural stem cells (NSCs) into spinal cord transection sites. Here, we characterize the incidence, distribution, and cellular composition of the colonies. NSCs harvested from E14 spinal cords from rats that express GFP were treated with a growth factor cocktail and grafted into the site of a complete spinal cord transection. Two months after transplant, spinal cord and brain tissue were analyzed histologically. Ectopic colonies were found at long distances from the transplant in the central canal of the spinal cord, the surface of the brainstem and spinal cord, and in the fourth ventricle. Colonies were present in 50% of the rats, and most rats had multiple colonies. Axons extended from the colonies into the host CNS. Colonies were strongly positive for nestin, a marker for neural precursors, and contained NeuN-positive cells with processes resembling dendrites, GFAP-positive astrocytes, APC/CC1-positive oligodendrocytes, and Ki-67-positive cells, indicating ongoing proliferation. Stereological analyses revealed an estimated 21,818 cells in a colony in the fourth ventricle, of which 1005 (5%) were Ki-67 positive. Immunostaining for synaptic markers (synaptophysin and VGluT-1) revealed large numbers of synaptophysin-positive puncta within the colonies but fewer VGluT-1 puncta. Continuing expansion of NSC-derived cell masses in confined spaces in the spinal cord and brain could produce symptoms attributable to compression of nearby tissue. It remains to be determined whether other cell types with self-renewing potential can also form colonies.
    Document Type:
    Reference
    Product Catalog Number:
    Multiple
    Product Catalog Name:
    Multiple
  • Isoflurane inhibits growth but does not cause cell death in hippocampal neural precursor cells grown in culture. 19293697

    Isoflurane causes long-term hippocampal-dependent learning deficits in rats despite limited isoflurane-induced hippocampal cell death, raising questions about the causality between isoflurane-induced cell death and isoflurane-induced cognitive function. Neurogenesis in the dentate gyrus is required for hippocampal-dependent learning and thus constitutes a potential alternative mechanism by which cognition can be altered after neonatal anesthesia. The authors tested the hypothesis that isoflurane alters proliferation and differentiation of hippocampal neural progenitor cells.Multipotent neural progenitor cells were isolated from pooled rat hippocampi (postnatal day 2) and grown in culture. These cells were exposed to isoflurane and evaluated for cell death using lactate dehydrogenase release, caspase activity, and immunocytochemistry for nuclear localization of cleaved caspase 3. Growth was assessed by cell counting and BrdU incorporation. Expression of markers of stemness (Sox2) and cell division (Ki67) were determined by quantitative polymerase chain reaction. Cell fate selection was assessed using immunocytochemistry to stain for neuronal and glial markers.Isoflurane did not change lactate dehydrogenase release, activity of caspase 3/7, or the amount of nuclear cleaved caspase 3. Isoflurane decreased caspase 9 activity, inhibited proliferation, and decreased the proportion of cells in s-phase. messenger ribonucleic acid expression of Sox2 (stem cells) and Ki67 (proliferation) were decreased. Differentiating neural progenitor cells more often select a neuronal fate after isoflurane exposure.The authors conclude that isoflurane does not cause cell death, but it does act directly on neural progenitor cells independently of effects on the surrounding brain to decrease proliferation and increase neuronal fate selection. These changes could adversely affect cognition after isoflurane anesthesia.
    Document Type:
    Reference
    Product Catalog Number:
    Multiple
    Product Catalog Name:
    Multiple
  • Reelin promotes hippocampal dendrite development through the VLDLR/ApoER2-Dab1 pathway. 14715136

    Reelin is a secreted glycoprotein that regulates neuronal positioning in cortical brain structures through the VLDLR and ApoER2 receptors and the adaptor protein Dab1. In addition to cellular disorganization, dendrite abnormalities are present in the brain of reeler mice lacking Reelin. It is unclear whether these defects are due primarily to cellular ectopia or the absence of Reelin. Here we examined dendrite development in the hippocampus of normal and mutant mice and in dissociated cultures. We found that dendrite complexity is severely reduced in homozygous mice deficient in Reelin signaling both in vivo and in vitro, and it is also reduced in heterozygous mice in the absence of cellular ectopia. Addition of Reelin interfering antibodies, receptor antagonists, and Dab1 phosphorylation inhibitors prevented dendrite outgrowth from normal neurons, whereas addition of recombinant Reelin rescued the deficit in reeler cultures. Thus, the same signaling pathway controls both neuronal migration and dendrite maturation.
    Document Type:
    Reference
    Product Catalog Number:
    Multiple
    Product Catalog Name:
    Multiple
  • PPARbeta activation inhibits melanoma cell proliferation involving repression of the Wilms' tumour suppressor WT1. 20066433

    Peroxisome proliferator-activated receptors (PPARs) are ligand-activated transcription factors that strongly influence molecular signalling in normal and cancer cells. Although increasing evidence suggests a role of PPARs in skin carcinogenesis, only expression of PPARgamma has been investigated in human melanoma tissues. Activation of PPARalpha has been shown to inhibit the metastatic potential, whereas stimulation of PPARgamma decreased melanoma cell proliferation. We show here that the third member of the PPAR family, PPARbeta/delta is expressed in human melanoma samples. Specific pharmacological activation of PPARbeta using GW0742 or GW501516 in low concentrations inhibits proliferation of human and murine melanoma cells. Inhibition of proliferation is accompanied by decreased expression of the Wilms' tumour suppressor 1 (WT1), which is implicated in melanoma proliferation. We demonstrate that PPARbeta directly represses WT1 as (1) PPARbeta activation represses WT1 promoter activity; (2) in chromatin immunoprecipitation and electrophoretic mobility shift assays, we identified a binding element for PPARbeta in the WT1 promoter; (3) deletion of this binding element abolishes repression by PPARbeta and (4) the WT1 downstream molecules nestin and zyxin are down-regulated upon PPARbeta activation. Our findings elucidate a novel mechanism of signalling by ligands of PPARbeta, which leads to suppression of melanoma cell growth through direct repression of WT1.
    Document Type:
    Reference
    Product Catalog Number:
    Multiple
    Product Catalog Name:
    Multiple