Millipore Sigma Vibrant Logo
 

Search

 
Showing

Narrow Your Results Use the filters below to refine your search

Document Type

  • (69)
  • (34)
  • (18)
  • (5)
  • (2)
  • Show More
Can't Find What You're Looking For?
Contact Customer Service

 
  • A membrane-bound trehalase from Chironomus riparius larvae: purification and sensitivity to inhibition. 20542873

    A preparation of a membrane-bound trehalase from the larvae of the midge Chironomus riparius (Diptera: Chironomidae) was obtained by detergent solubilization, ion-exchange chromatography and concanavalin A affinity chromatography. Trehalase was purified 1080-fold to a specific activity of 75 U mg(-)(1). The initial rate of trehalase activity followed Henri-Michaelis-Menten kinetics with a K(m) of 0.48 +/- 0.04 mM. Catalytic efficiency was maximal at pH 6.5. The activity was highly inhibited by mono- and bicyclic iminosugar alkaloids such as (in order of potency) casuarine (IC(50) = 0.25 +/- 0.03 microM), deoxynojirimycin (IC(50) = 2.83 +/- 0.34 microM) and castanospermine (IC(50) = 12.7 +/- 1.4 microM). Increasing substrate concentration reduced the inhibition. However, in the presence of deoxynojirimycin, Lineweaver-Burk plots were curvilinear upward. Linear plots were obtained with porcine trehalase. Here, we propose that deoxynojirimycin inhibits the activity of trehalase from C. riparius according to a ligand exclusion model. Inhibition was further characterized by measuring enzyme activity in the presence of a series of casuarine and deoxynojirimycin derivatives. For comparison, inhibition studies were also performed with porcine trehalase. Results indicate substantial differences between midge trehalase and mammalian trehalase suggesting that, in principle, inhibitors against insect pests having trehalase as biochemical targets can be developed.
    Document Type:
    Reference
    Product Catalog Number:
    2752
    Product Catalog Name:
    BrdU Cell Proliferation Kit
  • A switch in retrograde signaling from survival to stress in rapid-onset neurodegeneration. 19657041

    Retrograde axonal transport of cellular signals driven by dynein is vital for neuronal survival. Mouse models with defects in the retrograde transport machinery, including the Loa mouse (point mutation in dynein) and the Tg(dynamitin) mouse (overexpression of dynamitin), exhibit mild neurodegenerative disease. Transport defects have also been observed in more rapidly progressive neurodegeneration, such as that observed in the SOD1(G93A) transgenic mouse model for familial amyotrophic lateral sclerosis (ALS). Here, we test the hypothesis that alterations in retrograde signaling lead to neurodegeneration. In vivo, in vitro, and live-cell imaging motility assays show misregulation of transport and inhibition of retrograde signaling in the SOD1(G93A) model. However, similar inhibition is also seen in the Loa and Tg(dynamitin) mouse models. Thus, slowing of retrograde signaling leads only to mild degeneration and cannot explain ALS etiology. To further pursue this question, we used a proteomics approach to investigate dynein-associated retrograde signaling. These data indicate a significant decrease in retrograde survival factors, including P-Trk (phospho-Trk) and P-Erk1/2, and an increase in retrograde stress factor signaling, including P-JNK (phosphorylated c-Jun N-terminal kinase), caspase-8, and p75(NTR) cleavage fragment in the SOD1(G93A) model; similar changes are not seen in the Loa mouse. Cocultures of motor neurons and glia expressing mutant SOD1 (mSOD1) in compartmentalized chambers indicate that inhibition of retrograde stress signaling is sufficient to block activation of cellular stress pathways and to rescue motor neurons from mSOD1-induced toxicity. Hence, a shift from survival-promoting to death-promoting retrograde signaling may be key to the rapid onset of neurodegeneration seen in ALS.
    Document Type:
    Reference
    Product Catalog Number:
    Multiple
    Product Catalog Name:
    Multiple
  • AAV-mediated gene transfer in the perinatal period results in expression of FVII at levels that protect against fatal spontaneous hemorrhage. 22134170

    We explored adeno-associated viral vector (AAV)-mediated gene transfer in the perinatal period in animal models of severe congenital factor VII (FVII) deficiency, a disease associated with early postnatal life-threatening hemorrhage. In young adult mice with plasma FVII < 1% of normal, a single tail vein administration of AAV (1 × 10(13) vector genomes [vg]/kg) resulted in expression of murine FVII at 266% ± 34% of normal for ≥ 67 days, which mediated protection against fatal hemorrhage and significantly improved survival. Codon optimization of human FVII (hFVIIcoop) improved AAV transgene expression by 37-fold compared with the wild-type hFVII cDNA. In adult macaques, a single peripheral vein injection of 2 × 10(11) vg/kg of the hFVIIcoop AAV vector resulted in therapeutic levels of hFVII expression that were equivalent in males (10.7% ± 3.1%) and females (12.3% ± 0.8%). In utero delivery of this vector in the third trimester to fetal monkeys conferred expression of hFVII at birth of 20.4% ± 3.7%, with a gradual decline to > 1% by 7 weeks. Re-administration of an alternative serotype at 12 months postnatal age increased hFVII levels to 165% ± 6.2% of normal, which remained at therapeutic levels for a further 28 weeks without toxicity. Thus, perinatal AAV-mediated gene transfer shows promise for disorders with onset of pathology early after birth.
    Document Type:
    Reference
    Product Catalog Number:
    LP1
    Product Catalog Name:
    VLDL, human