Functional dissection of the PE domain responsible for translocation of PE_PGRS33 across the mycobacterial cell wall. Alessandro Cascioferro,Maria H Daleke,Marcello Ventura,Valentina Donà,Giovanni Delogu,Giorgio Palù,Wilbert Bitter,Riccardo Manganelli PloS one
6
2011
Show Abstract
PE are peculiar exported mycobacterial proteins over-represented in pathogenic mycobacterial species. They are characterized by an N-terminal domain of about 110 amino acids (PE domain) which has been demonstrated to be responsible for their export and localization. In this paper, we characterize the PE domain of PE_PGRS33 (PE(Rv1818c)), one of the best characterized PE proteins. We constructed several mutated proteins in which portions of the PE domain were deleted or subjected to defined mutations. These proteins were expressed in different mycobacterial species and their localization was characterized. We confirmed that the PE domain is essential for PE_PGRS33 surface localization, and demonstrated that a PE domain lacking its first 30 amino acids loses its function. However, single amino acid substitutions in two regions extremely well conserved within the N-terminal domain of all PE proteins had some effect on the stability of PE_PGRS33, but not on its localization. Using Mycobacterium marinum we could show that the type VII secretion system ESX-5 is essential for PE_PGRS33 export. Moreover, in M. marinum, but not in Mycobacterium bovis BCG and in Mycobacterium tuberculosis, the PE domain of PE_PGRS33 is processed and secreted into the culture medium when expressed in the absence of the PGRS domain. Finally, using chimeric proteins in which different portions of the PE(Rv1818c) domain were fused to the N-terminus of the green fluorescent protein, we could hypothesize that the first 30 amino acids of the PE domain contain a sequence that allows protein translocation. Full Text Article | 22110736
|
The glutamate release inhibitor Riluzole decreases migration, invasion, and proliferation of melanoma cells. Maithao N Le,Joseph L-K Chan,Stephen A Rosenberg,Adam S Nabatian,Kim T Merrigan,Karine A Cohen-Solal,James S Goydos The Journal of investigative dermatology
130
2010
Show Abstract
The goal of this study was to examine the effects of metabotropic glutamate receptor-1 (GRM1) blockade on melanoma anchorage-independent growth and invasion. We performed colony and invasion assays using GRM1-expressing melanoma lines and the GRM1-negative UACC930 line. Using the glutamate-release inhibitor Riluzole or the non-competitive GRM1 antagonist BAY 36-7620 we were able to induce considerable inhibition of colony formation and invasion in GRM1-expressing melanoma lines. Neither pharmacological agent induced significant reduction in colony formation or invasion in the GRM1-negative melanoma line, UACC930. Additionally we assessed the efficacy of these inhibitors to inhibit the growth of fresh melanoma tumor samples cultured on a 74-mum nylon mesh. Both Riluzole and BAY 36-7620 significantly inhibited tumor cell growth into the interstitial spaces of the mesh. When repeated with normal mole samples both inhibitors were much less effective in preventing the outgrowth of cells. These experiments show that a specific antagonist of GRM1 (BAY 36-7620) or an inhibitor of glutamate release (Riluzole) can significantly suppress melanoma migration, invasion and colony formation as well as inhibit the proliferation of fresh melanoma cells. These findings, added to our previous work, strengthen the case that GRM1 is a valid therapeutic target in patients with melanoma. | 20505744
|
Qualitative and quantitative differences in the intensity of Fas-mediated intracellular signals determine life and death in T cells. Min-Jung Shin,Jae-Hyuck Shim,Jae-Young Lee,Wook-Jin Chae,Heung-Kyu Lee,Tomohiro Morio,Jun Han Park,Eun-Ju Chang,Sang-Kyou Lee International journal of hematology
92
2010
Show Abstract
Fas stimulation has been reported to promote the activation and proliferation of T lymphocytes, but the intracellular signalling pathways that mediate non-apoptotic responses to Fas are poorly defined. To distinguish between the activation signalling and the death-inducing pathway downstream of Fas, we generated a novel T cell line expressing a chimeric hCD8-FasC protein and found that stimulation with the anti-CD8 antibodies induced tyrosine phosphorylation of TCR-proximal proteins, activation of Raf-1/ERK, p38 and JNK, and increased expression of CD69, Fas, and Fas ligand. Stimulation of hCD8-FasC-induced activation of an atypical NF-kappaB pathway, partial cleavage of caspases, and increased expression of TRAF1, FLIP(L) and FLIP(S), thereby protecting T cells from FasL-mediated apoptosis. The proliferative response transmitted through hCD8-FasC chimeric receptors was converted into death signals when cells were stimulated, resulting in increased expression of IL-2 and Nur77 and increased caspase cleavage. Surprisingly, both the enhanced expression of FLIP(L) and FLIP(S) and the complete inhibition of FLIP(S) expression were functionally associated with cell death induction. These findings imply that Fas is able to trigger intracellular signalling events driving both apoptosis and activation of T cells but that cell fate is determined by quantitative and qualitative differences in intracellular signalling following Fas stimulation. | 20658220
|
Regulation of STIM1 and SOCE by the ubiquitin-proteasome system (UPS). Jeffrey M Keil,Zhouxin Shen,Steven P Briggs,Gentry N Patrick PloS one
5
2010
Show Abstract
The ubiquitin proteasome system (UPS) mediates the majority of protein degradation in eukaryotic cells. The UPS has recently emerged as a key degradation pathway involved in synapse development and function. In order to better understand the function of the UPS at synapses we utilized a genetic and proteomic approach to isolate and identify novel candidate UPS substrates from biochemically purified synaptic membrane preparations. Using these methods, we have identified Stromal interacting molecule 1 (STIM1). STIM1 is as an endoplasmic reticulum (ER) calcium sensor that has been shown to regulate store-operated Ca(2+) entry (SOCE). We have characterized STIM1 in neurons, finding STIM1 is expressed throughout development with stable, high expression in mature neurons. As in non-excitable cells, STIM1 is distributed in a membranous and punctate fashion in hippocampal neurons. In addition, a population of STIM1 was found to exist at synapses. Furthermore, using surface biotinylation and live-cell labeling methods, we detect a subpopulation of STIM1 on the surface of hippocampal neurons. The role of STIM1 as a regulator of SOCE has typically been examined in non-excitable cell types. Therefore, we examined the role of the UPS in STIM1 and SOCE function in HEK293 cells. While we find that STIM1 is ubiquitinated, its stability is not altered by proteasome inhibitors in cells under basal conditions or conditions that activate SOCE. However, we find that surface STIM1 levels and thapsigargin (TG)-induced SOCE are significantly increased in cells treated with proteasome inhibitors. Additionally, we find that the overexpression of POSH (Plenty of SH3's), an E3 ubiquitin ligase recently shown to be involved in the regulation of Ca(2+) homeostasis, leads to decreased STIM1 surface levels. Together, these results provide evidence for previously undescribed roles of the UPS in the regulation of STIM1 and SOCE function. Full Text Article | 20976103
|
Rev and Rex proteins of human complex retroviruses function with the MMTV Rem-responsive element. Jennifer A Mertz,Mary M Lozano,Jaquelin P Dudley Retrovirology
6
2009
Show Abstract
Mouse mammary tumor virus (MMTV) encodes the Rem protein, an HIV Rev-like protein that enhances nuclear export of unspliced viral RNA in rodent cells. We have shown that Rem is expressed from a doubly spliced RNA, typical of complex retroviruses. Several recent reports indicate that MMTV can infect human cells, suggesting that MMTV might interact with human retroviruses, such as human immunodeficiency virus (HIV), human T-cell leukemia virus (HTLV), and human endogenous retrovirus type K (HERV-K). In this report, we test whether the export/regulatory proteins of human complex retroviruses will increase expression from vectors containing the Rem-responsive element (RmRE). Full Text Article | 19192308
|
Molecular evolution of specific human antibody against MUC1 mucin results in improved recognition of the antigen on tumor cells. Jonas Persson,Malin Bäckström,Henrik Johansson,Karin Jirström,Gunnar C Hansson,Mats Ohlin Tumour biology : the journal of the International Society for Oncodevelopmental Biology and Medicine
30
2009
Show Abstract
The MUC1 mucin is differentially expressed and glycosylated in cancer tissue as opposed to healthy tissue. Due to these differences, MUC1 is considered a potential biomarker suitable for cancer diagnosis and therapy. In a previous study, the human MUC1-specific antibody 12ESC-6 was able to bind a sequence variant of the tandem repeat of MUC1 that is not recognized by many other MUC1-specific antibodies. It was also found to bind efficiently to MUC1-carrying cells. We have now used 12ESC-6 as starting point for random mutagenesis to isolate variants with improved ability to bind MUC1 in human tumor tissue. The resulting 12ESC-6 variants were shown to recognize not only the naked MUC1 tandem repeat but even more so glycosylated variants thereof, in particular those carrying the GalNAc (Tn) glycoform. Selected variants of 12ESC-6 demonstrated improved staining of MUC1 on cell lines using flow cytometry and improved staining of the antigen in breast tumor tissue by immunohistochemistry. Molecular evolution and specific fine-tuning thus have the potential to improve the performance of antibody specificities targeting tumor-associated epitopes on MUC1 mucin. | 19776674
|
Dopamine D1 receptor modulates hippocampal representation plasticity to spatial novelty. Anh Hai Tran,Teruko Uwano,Tatsuo Kimura,Etsuro Hori,Motoya Katsuki,Hisao Nishijo,Taketoshi Ono The Journal of neuroscience : the official journal of the Society for Neuroscience
28
2008
Show Abstract
The human hippocampus is critical for learning and memory. In rodents, hippocampal pyramidal neurons fire in a location-specific manner, forming relational representations of environmental cues. The importance of glutamatergic systems in learning and in hippocampal neural synaptic plasticity has been shown. However, the role of dopaminergic systems in the response of hippocampal neural plasticity to novel and familiar spatial stimuli remains unclear. To clarify this important issue, we recorded hippocampal neurons from dopamine D(1) receptor knock-out (D1R-KO) mice and their wild-type (WT) littermates under the manipulation of distinct spatial cues in a familiar and a novel environment. Here we report that in WT mice, the majority of place cells quickly responded to the manipulations of distal and proximal cues in both familiar and novel environments. In contrast, the influence of distal cues on spatial firing in D1R-KO mice was abolished. In the D1R-KO mice, the influence of proximal cues was facilitated in a familiar environment, and in a novel environment most of the place cells were less likely to respond to changes of spatial cues. Our results demonstrate that hippocampal neurons in mice can rapidly and flexibly encode information about space from both distal and proximal cues to cipher a novel environment. This ability is necessary for many types of learning, and lacking D1R can radically alter this learning-related neural activity. We propose that D1R is crucially implicated in encoding spatial information in novel environments, and influences the plasticity of hippocampal representations, which is important in spatial learning and memory. | 19074012
|
Identification and biochemical characterization of unique secretory nucleases of the human enteric pathogen, Entamoeba histolytica. Glen C McGugan,Manju B Joshi,Dennis M Dwyer The Journal of biological chemistry
282
2007
Show Abstract
The ancient eukaryotic human pathogen, Entamoeba histolytica, is a nucleo-base auxotroph (i.e. lacks the ability to synthesize purines or pyrimidines de novo) and therefore is totally dependent upon its host for the supply of these essential nutrients. In this study, we identified two unique 28-kDa, dithiothreitol-sensitive nucleases and showed that they are constitutively released/secreted by parasites during axenic culture. Using several different molecular approaches, we identified and characterized the structure of EhNucI and EhNucII, genes that encode ribonuclease T2 family proteins. Homologous episomal expression of epitope-tagged EhNucI and EhNucII chimeric constructs was used to define the functional and biochemical properties of these released/secreted enzymes. Results of coupled immunoprecipitation-enzyme activity analyses demonstrated that these secretory enzymes could hydrolyze a variety of synthetic polynucleotides, as well as the natural nucleic acid substrate RNA. Furthermore, our results demonstrated that sera from acutely infected amebiasis patients recognized and immunoprecipitated these parasite secretory enzymes. Based on these observations, we hypothesize that within its host, these secretory nucleases could function, at a distance away from the parasite, to harness (i.e. hydrolyze/access) host-derived nucleic acids to satisfy the essential purine and pyrimidine requirements of these organisms. Thus, these enzymes might play an important role in facilitating the survival, growth, and development of this important human pathogen. | 17766245
|
Molecular analysis of PIP2 regulation of HERG and IKr. Jin-Song Bian,Anna Kagan,Thomas V McDonald American journal of physiology. Heart and circulatory physiology
287
2004
Show Abstract
We previously reported that cloned human ether-a-go-go-related gene (HERG) K+ channels are regulated by changes in phosphatidylinositol 4,5-bisphosphate (PIP2) concentration. Here we investigated the molecular determinants of PIP2 interactions with HERG channel protein. To establish the molecular nature of the PIP2-HERG interaction, we examined a segment of the HERG COOH terminus with a high concentration of positively charged amino acids (nos. 883-894) as a possible site of interaction with negatively charged PIP2. When we excised deletion-HERG (D-HERG) or mutated methionine-substituted-HERG (M-HERG) this segment of HERG to neutralize the amino acid charge, the mutant channels produced current that was indistinguishable from wild-type HERG. Elevating internal PIP2, however, no longer accelerated the activation kinetics of the mutant HERG. Moreover, PIP2-dependent hyperpolarizing shifts in the voltage dependence of activation were abolished with both mutants. PIP2 effects on channel-inactivation kinetics remained intact, which suggests an uncoupling of inactivation and activation regulation by PIP2. The specific binding of radiolabeled PIP2 to both mutant channel proteins was nearly abolished. Stimulation of alpha1A-adrenergic receptors produced a reduction in current amplitude of the rapidly activating delayed rectifier K+ current (the current carried by ERG protein) from rabbit ventricular myocytes. The alpha-adrenergic-induced current reduction was accentuated by PKC blockers and also unmasked a depolarizing shift in the voltage dependence of activation, which supports the conclusion that receptor activation of PLC results in PIP2 consumption that alters channel activity. These results support a physiological role for PIP2 regulation of the rapidly activating delayed rectifier K+ current during autonomic stimulation and localize a site of interaction to the COOH-terminal tail of the HERG K+ channel. | 15231497
|
Identification of CC chemokine receptor 7 residues important for receptor activation. Thomas R Ott,Anil Pahuja,Sarah A Nickolls,David G Alleva,R Scott Struthers The Journal of biological chemistry
279
2004
Show Abstract
The binding pocket of family A GPCRs that bind small biogenic amines is well characterized. In this study we identify residues on CC chemokine receptor 7 (CCR-7) that are involved in agonist-mediated receptor activation but not in high affinity ligand binding. The mutations also affect the ability of the ligands to induce chemotaxis. Two of the residues, Lys3.33(137) and Gln5.42(227), are consistent with the binding pocket described for biogenic amines, while Lys3.26(130) and Asn7.32(305), are found at, or close to, the cell surface. Our observations are in agreement with findings from other peptide and chemokine receptors, which indicate that receptors that bind larger ligands contain contact sites closer to the cell surface in addition to the conventional transmembrane binding pocket. These findings also support the theory that chemokine receptors require different sets of interactions for high affinity ligand binding and receptor activation. | 15284247
|