Calpains mediate axonal cytoskeleton disintegration during Wallerian degeneration. Ma, M; Ferguson, TA; Schoch, KM; Li, J; Qian, Y; Shofer, FS; Saatman, KE; Neumar, RW Neurobiology of disease
56
34-46
2013
Show Abstract
In both the central nervous system (CNS) and peripheral nervous system (PNS), transected axons undergo Wallerian degeneration. Even though Augustus Waller first described this process after transection of axons in 1850, the molecular mechanisms may be shared, at least in part, by many human diseases. Early pathology includes failure of synaptic transmission, target denervation, and granular disintegration of the axonal cytoskeleton (GDC). The Ca(2+)-dependent protease calpains have been implicated in GDC but causality has not been established. To test the hypothesis that calpains play a causal role in axonal and synaptic degeneration in vivo, we studied transgenic mice that express human calpastatin (hCAST), the endogenous calpain inhibitor, in optic and sciatic nerve axons. Five days after optic nerve transection and 48 h after sciatic nerve transection, robust neurofilament proteolysis observed in wild-type controls was reduced in hCAST transgenic mice. Protection of the axonal cytoskeleton in sciatic nerves of hCAST mice was nearly complete 48 h post-transection. In addition, hCAST expression preserved the morphological integrity of neuromuscular junctions. However, compound muscle action potential amplitudes after nerve transection were similar in wild-type and hCAST mice. These results, in total, provide direct evidence that calpains are responsible for the morphological degeneration of the axon and synapse during Wallerian degeneration. | 23542511
|
Calpastatin overexpression protects axonal transport in an in vivo model of traumatic axonal injury. Ma, M; Shofer, FS; Neumar, RW Journal of neurotrauma
29
2555-63
2012
Show Abstract
Traumatic brain injury (TBI) causes substantial morbidity and mortality worldwide. A key component of both mild and severe TBI is diffuse axonal injury. Except in cases of extreme mechanical strain, when axons are torn at the moment of trauma, axonal stretch injury is characterized by early cytoskeletal proteolysis, transport disruption, and secondary axotomy. Calpains, a family of Ca(2+)-dependent proteases, have been implicated in this pathologic cascade, but direct in vivo evidence is lacking. To test the hypothesis that calpains play a causal role in axonal stretch injury in vivo, we used our rat optic nerve stretch model following adeno-associated viral (AAV) vector-mediated overexpression of the endogenous calpain inhibitor calpastatin in optic nerve axons. AAV vectors were designed for optimal expression of human calpastatin (hCAST) in retinal ganglion cells (RGCs). Calpain inhibition by the expressed protein was then confirmed in primary cortical cultures. Finally, we performed bilateral intravitreal injections of AAV vectors expressing hCAST or the reporter protein ZsGreen 3 weeks prior to unilateral optic nerve stretch. Immediately after stretch injury, Fluoro-Gold was injected into the superior colliculi for assessment of retrograde axonal transport. Rats were euthanized 4 days after stretch injury. Both hCAST and ZsGreen were detected in axons throughout the optic nerve to the chiasm. Calpastatin overexpression partially preserved axonal transport after stretch injury (58.3±15.6% reduction in Fluoro-Gold labeling relative to uninjured contralateral controls in ZsGreen-expressing RGCs, versus 33.8±23.9% in hCAST-expressing RGCs; p=0.038). These results provide direct evidence that axonal calpains play a causal role in transport disruption after in vivo stretch injury. | 22776025
|
Calpain 1 and Calpastatin expression is developmentally regulated in rat brain. Li, Y; Bondada, V; Joshi, A; Geddes, JW Experimental neurology
220
316-9
2009
Show Abstract
Calpains and caspases are cysteine endopeptidases which share many similar substrates. Caspases are essential for caspase-dependent apoptotic death where calpains may play an augmentive role, while calpains are strongly implicated in necrotic cell death morphologies. Previous studies have demonstrated a down-regulation in the expression of many components of the caspase-dependent cell death pathway during CNS development. We therefore sought to determine if there is a corresponding upregulation of calpains. The major CNS calpains are the mu-and m-isoforms, composed of the unique 80 kDa calpain 1 and 2 subunits, respectively, and the shared 28 kDa small subunit. In rat brain, relative protein and mRNA levels of calpain 1, calpain 2, caspase 3, and the endogenous calpain inhibitor-calpastatin, were evaluated using western blot and real-time RT-PCR. The developmental time points examined ranged from embryonic day 18 until postnatal day 90. Calpain 1 and calpastatin protein and mRNA levels were low at early developmental time points and increased dramatically by P30. Conversely, caspase-3 expression was greatest at E18, and was rapidly downregulated by P30. Calpain 2 protein and mRNA levels were relatively constant throughout the E18-P90 age range examined. The inverse relationship of calpain 1 and caspase 3 levels during CNS development is consistent with the shift from caspase-dependent to caspase-independent cell death mechanisms following CNS injury in neonatal vs. adult rat brain. Full Text Article | 19751724
|
Possible involvement of calpain activation in pathogenesis of chronic heart failure after acute myocardial infarction. Takahashi, M; Tanonaka, K; Yoshida, H; Koshimizu, M; Daicho, T; Oikawa, R; Takeo, S Journal of cardiovascular pharmacology
47
413-21
2006
Show Abstract
Changes in proteolytic activity of the myocardium during the development of heart failure after left coronary artery ligation (CAL) of rats were examined. Hemodynamics of the rats at the eighth week (8w-CAL rat), but not at the second week (2w-CAL rat), after CAL showed the symptoms of chronic heart failure. Contents of mu-calpin and m-calpain, but not an intrinsic calpain inhibitor calpastatin, in the viable left ventricular muscle (viable LV) and the right ventricular muscle (RV) of the 2w-CAL and 8w-CAL rats were increased, which was associated with an elevation of intrinsic activities of leupeptin-sensitive, Ca(2+)-activated proteolysis in the cytosolic fractions of the viable LV and RV. Oral administration of 3 mg/kg/d trandolapril or 1 mg/kg/d candesartan from the second to eighth week after CAL improved the hemodynamics of 8w-CAL rats. The drug treatment attenuated the increases in mu-calpain and m-calpain contents and the elevation of the proteolytic activity of the viable LV and RV in the 8w-CAL rat. The drug treatment increased calpastatin content of the RV in the 8w-CAL rat. These results suggest that sustained activation of calpain is involved in the development of chronic heart failure and that trandolapril and candesartan prevent the activation of calpains after CAL. | 16633084
|
Effects of ACE inhibitor and AT1 blocker on dystrophin-related proteins and calpain in failing heart. Takahashi, M; Tanonaka, K; Yoshida, H; Oikawa, R; Koshimizu, M; Daicho, T; Toyo-Oka, T; Takeo, S Cardiovascular research
65
356-65
2005
Show Abstract
Genetic depletion of dystrophin-related protein (DRP) complex causes cardiomyopathy in animals and humans. We found in a previous study that some types of DRP were degraded and that calpain content was increased in rats with non-genetically induced heart failure. The present study was aimed at examining the effects of an angiotensin-I-converting enzyme inhibitor (ACEI) trandolapril (Tra) or an angiotensin II type 1 receptor blocker (ARB) candesartan (Can), both of which are known to improve the pathophysiology of chronic heart failure (CHF) on degradation of DRP in failing hearts.Coronary artery-ligated (CAL) and sham-operated rats (Sham rats) were treated orally with 3 mg/kg/day trandolapril (Tra) or 1 mg/kg/day candesartan (Can) from the 2nd to 8th week after surgery.Hemodynamic parameters of CAL rats at the 8th week after CAL (8w-CAL) indicated heart failure. alpha-Sarcoglycan (SG) and dystrophin in the surviving left ventricle (surviving LV) of 8w-CAL rats decreased, whereas beta-, gamma-, and delta-SGs remained unchanged. Calcium-activated neutral proteases mu-calpain and m-calpain increased in the surviving LV at the 8th week of postmyocardial infarction. Proteolytic activity in the presence of 5 mM Ca2+ markedly increased at the 2nd and 8th weeks, whereas 50 microM Ca2+ slightly but significantly increased proteolysis of casein. Tra or Can treatment improved the hemodynamic parameters, attenuated changes in alpha-SG and dystrophin, and reversed both calpain contents and activities of the failing heart back to sham levels.These results suggest that attenuation in calpain-induced degradation of DRP complex is a possible mechanism for the Tra- or Can-mediated improvement of the pathogenesis of CHF following myocardial infarction. | 15639474
|
Overexpression of calpastatin by gene transfer prevents troponin I degradation and ameliorates contractile dysfunction in rat hearts subjected to ischemia/reperfusion. Maekawa, A; Lee, JK; Nagaya, T; Kamiya, K; Yasui, K; Horiba, M; Miwa, K; Uzzaman, M; Maki, M; Ueda, Y; Kodama, I Journal of molecular and cellular cardiology
35
1277-84
2003
Show Abstract
Calpain is a Ca(2+)-activated neutral protease that supposedly plays a key role in myocardial dysfunction following ischemia/reperfusion, by degrading certain proteins involved in the contraction mechanism. It is possible that overexpression of calpastatin, an endogenous calpain inhibitor, lessens contractile dysfunction in the heart after reperfusion by preventing cardiac troponin I (TnI) degradation. This claim is tested by overexpression of human calpastatin (hCS) in rat hearts ex vivo using an adenovirus vector; the hearts were transplanted heterotopically into the abdomens of recipient rats to allow expression of hCS. On the fourth day after surgery, the hearts were excised and perfused in vitro to study their recovery from 30 min of global ischemia, which was followed by 60 min of reperfusion. The peak recovery of the left ventricular developed pressure (LVDP), and the values of its first derivative (max dP/dt, min dP/dt) in the hCS-overexpressed hearts were 88.9 +/- 4.8%, 90.8 +/- 9.2% and 106.4 +/- 9.8%, respectively; these values were all significantly greater than in the control hearts transfected with LacZ alone (51.4 +/- 6.9%, 52.6 +/- 8.1% and 54.7 +/- 6.6%, P < 0.05). In western blot analysis of ventricular myocardial samples (at 60-min reperfusion) using a monoclonal anti-TnI antibody, two bands corresponding to intact TnI (30 kDa) and TnI fragments (27 kDa) were distinguished. The fraction of 27-kDa TnI (percent of total TnI immunoreactivity) in hCS-overexpressed hearts was significantly less than the controls (5.7 +/- 2.7% vs. 18.1 +/- 3.2%, P < 0.05), implying a protective action of hCS against TnI degradation. These results suggest that adenovirus-mediated overexpression of hCS in the heart could be a novel biological means to minimize myocardial stunning by ischemia/reperfusion. | 14519437
|
Decrease in sarcoglycans and dystrophin in failing heart following acute myocardial infarction. Yoshida, H; Takahashi, M; Koshimizu, M; Tanonaka, K; Oikawa, R; Toyo-oka, T; Takeo, S Cardiovascular research
59
419-27
2003
Show Abstract
Genetic defects in several sarcoglycans (SGs) and dystrophin (Dys) play a critical role in cardiomyopathy. The present study was designed to determine whether changes in SGs and Dys might occur in animals with chronic heart failure (CHF) induced by acute myocardial infarction (AMI), which have no genetic defects.AMI was induced by the left coronary artery ligation (CAL) in rats. The hemodynamic parameters of the 2- and 8-week CAL (2w- and 8w-CAL) rats were measured and the myocardial SGs, Dys, calpain, and calpastatin levels were determined by the Western blot method. Myocardial calpain-like protease activity was evaluated as caseinolysis activity.Increases in left ventricular end-diastolic pressure (LVEDP) and right ventricular systolic pressure, and a decrease in +/-dP/dt were observed at the 2nd week, whereas cardiac output index (COI) was preserved. In contrast, the 8w-CAL rats showed a further increment in LVEDP with low COI. alpha-SG of the viable left ventricle (LV), and septum (Sep) of the 8w-CAL rat decreased (60-70% of the control). The alpha- and beta-SGs of the right ventricle (RV) of the 2w- and 8w-CAL rats were reduced, while gamma- and delta-SGs in the three regions did not change significantly. Dys in the viable LV and RV of the 8w-CAL rat decreased (75% of the control). The amount of m-calpain in the three regions of the 2w- and 8w-CAL rats increased (140-200% of the control), whereas the endogenous calpain inhibitor, calpastatin, did not change significantly. The in vitro degradation studies using purified m-calpain or cytosolic fractions of the 8w-CAL rat heart suggested a reduction in SGs and Dys by calpain.The results suggest that a decrease in SGs and Dys may play an important role in the pathophysiology of CHF following AMI. | 12909325
|
A comparison of the intracellular distribution of mu-calpain, m-calpain, and calpastatin in proliferating human A431 cells. Lane, RD; Allan, DM; Mellgren, RL Experimental cell research
203
5-16
1992
Show Abstract
Little is known about the relative intracellular localizations of the calcium-dependent proteases, calpains, and their naturally occurring inhibitor, calpastatin. In the present study, the intracellular localization of mu-calpain, m-calpain, and calpastatin was studied at the light microscopic level in proliferating A431 cells. Highly specific antibodies against the three antigens revealed distinct staining patterns in interphase and mitotic cells. Most notably, calpastatin in interphase cells was localized near the nucleus in tube-like, or large granular structures, while the calpains were more uniformly distributed through the cytoplasm in either a fibrillar form (mu-calpain) or a diffuse or fine granular form (m-calpain). The distribution patterns of the two calpain isozymes were distinctly different during mitosis. m-Calpain was concentrated at the mitotic spindle poles and midbody, while mu-calpain appeared to accumulate at the cell membrane and the spindles. Four other human cell lines as well as normal human monocytes were examined to determine if the calpains-calpastatin segregation patterns are common to other cells or are unique to the A431 line. With the exception of abundant nuclear mu-calpain in the C-33A cervical carcinoma, the segregation of the proteins was similar to that of A431. These studies indicate that calpains may be localized at regions which are relatively poor in calpastatin content. Proteins at these sites may be susceptible to calpain-catalyzed cleavage. | 1426051
|