Search

 
Showing
Products (0)
Documents (1,825)
Site Content (0)

Narrow Your Results Use the filters below to refine your search

Document Type

  • (1,542)
  • (155)
  • (110)
  • (9)
  • (6)
  • Show More
Can't Find What You're Looking For?
Contact Customer Service

 
  • The human cardiac and skeletal muscle proteomes defined by transcriptomics and antibody-based profiling. 26109061

    To understand cardiac and skeletal muscle function, it is important to define and explore their molecular constituents and also to identify similarities and differences in the gene expression in these two different striated muscle tissues. Here, we have investigated the genes and proteins with elevated expression in cardiac and skeletal muscle in relation to all other major human tissues and organs using a global transcriptomics analysis complemented with antibody-based profiling to localize the corresponding proteins on a single cell level.Our study identified a comprehensive list of genes expressed in cardiac and skeletal muscle. The genes with elevated expression were further stratified according to their global expression pattern across the human body as well as their precise localization in the muscle tissues. The functions of the proteins encoded by the elevated genes are well in line with the physiological functions of cardiac and skeletal muscle, such as contraction, ion transport, regulation of membrane potential and actomyosin structure organization. A large fraction of the transcripts in both cardiac and skeletal muscle correspond to mitochondrial proteins involved in energy metabolism, which demonstrates the extreme specialization of these muscle tissues to provide energy for contraction.Our results provide a comprehensive list of genes and proteins elevated in striated muscles. A number of proteins not previously characterized in cardiac and skeletal muscle were identified and localized to specific cellular subcompartments. These proteins represent an interesting starting point for further functional analysis of their role in muscle biology and disease.
    Document Type:
    Reference
    Product Catalog Number:
    07-087
  • Genomic organization, transcriptomic analysis, and functional characterization of avian α- and β-keratins in diverse feather forms. 25152353

    Feathers are hallmark avian integument appendages, although they were also present on theropods. They are composed of flexible corneous materials made of α- and β-keratins, but their genomic organization and their functional roles in feathers have not been well studied. First, we made an exhaustive search of α- and β-keratin genes in the new chicken genome assembly (Galgal4). Then, using transcriptomic analysis, we studied α- and β-keratin gene expression patterns in five types of feather epidermis. The expression patterns of β-keratin genes were different in different feather types, whereas those of α-keratin genes were less variable. In addition, we obtained extensive α- and β-keratin mRNA in situ hybridization data, showing that α-keratins and β-keratins are preferentially expressed in different parts of the feather components. Together, our data suggest that feather morphological and structural diversity can largely be attributed to differential combinations of α- and β-keratin genes in different intrafeather regions and/or feather types from different body parts. The expression profiles provide new insights into the evolutionary origin and diversification of feathers. Finally, functional analysis using mutant chicken keratin forms based on those found in the human α-keratin mutation database led to abnormal phenotypes. This demonstrates that the chicken can be a convenient model for studying the molecular biology of human keratin-based diseases.
    Document Type:
    Reference
    Product Catalog Number:
    CBL407
    Product Catalog Name:
    Anti-PCNA Antibody, clone PC10
  • Molecular signatures to define spermatogenic cells in common marmoset (Callithrix jacchus). 22323619

    Germ cell development is a fundamental process required to produce offspring. The developmental program of spermatogenesis has been assumed to be similar among mammals. However, recent studies have revealed differences in the molecular properties of primate germ cells compared with the well-characterized mouse germ cells. This may prevent simple application of rodent insights into higher primates. Therefore, thorough investigation of primate germ cells is necessary, as this may lead to the development of more appropriate animal models. The aim of this study is to define molecular signatures of spermatogenic cells in the common marmoset, Callithrix jacchus. Interestingly, NANOG, PRDM1, DPPA3 (STELLA), IFITM3, and ZP1 transcripts, but no POU5F1 (OCT4), were detected in adult marmoset testis. Conversely, mouse testis expressed Pou5f1 but not Nanog, Prdm1, Dppa3, Ifitm3, and Zp1. Other previously described mouse germ cell markers were conserved in marmoset and mouse testes. Intriguingly, marmoset spermatogenic cells underwent dynamic protein expression in a developmental stage-specific manner; DDX4 (VASA) protein was present in gonocytes, diminished in spermatogonial cells, and reexpressed in spermatocytes. To investigate epigenetic differences between adult marmoset and mice, DNA methylation analyses identified unique epigenetic profiles to marmoset and mice. Marmoset NANOG and POU5F1 promoters in spermatogenic cells exhibited a methylation status opposite to that in mice, while the DDX4 and LEFTY1 loci, as well as imprinted genes, displayed an evolutionarily conserved methylation pattern. Marmosets have great advantages as models for human reproductive biology and are also valuable as experimental nonhuman primates; thus, the current study provides an important platform for primate reproductive biology, including possible applications to humans.
    Document Type:
    Reference
    Product Catalog Number:
    MAB4419
    Product Catalog Name:
    Anti-OCT-4 [POU5F1] Antibody, clone 7F9.2
  • Detection of G-quadruplex DNA in mammalian cells. 24163102

    It has been proposed that guanine-rich DNA forms four-stranded structures in vivo called G-quadruplexes or G4 DNA. G4 DNA has been implicated in several biological processes, but tools to study G4 DNA structures in cells are limited. Here we report the development of novel murine monoclonal antibodies specific for different G4 DNA structures. We show that one of these antibodies designated 1H6 exhibits strong nuclear staining in most human and murine cells. Staining intensity increased on treatment of cells with agents that stabilize G4 DNA and, strikingly, cells deficient in FANCJ, a G4 DNA-specific helicase, showed stronger nuclear staining than controls. Our data strongly support the existence of G4 DNA structures in mammalian cells and indicate that the abundance of such structures is increased in the absence of FANCJ. We conclude that monoclonal antibody 1H6 is a valuable tool for further studies on the role of G4 DNA in cell and molecular biology.
    Document Type:
    Reference
    Product Catalog Number:
    MABE1126
    Product Catalog Name:
    Anti-DNA G-quadruplex (G4) Antibody, clone 1H6
  • The impact of water quality on IVD testing The impact of water quality on IVD testing

    Several types of biological techniques have been adopted for performing sensitive IVDs, such as biochemistry, microbiology, immunoassays, immunohistochemistry, and molecular biology. Such IVD tests are used for both clinical and industrial applications by hospital laboratories, biomedical research laboratories, blood banks, transfusion centers, and physician office laboratories. Since pure water is used not only to prepare most IVD devices and many reagents but also to run the assays, water purification systems should be validated to ensure consistent water quality. All water quality parameters, from feed-water properties to high-purity water production, need to be monitored by IVD test users and manufacturers on a regular basis. Controlling bacteria and their by-products with advanced water purification technologies and filters provides high-quality water for developing assays that are sensitive to such contaminants. Controlling water quality eliminates frequent decontamination and lowers cost, thereby optimizing performance and reducing downtime that can be costly to IVD manufacturers.
    Document Type:
    Reference
    Product Catalog Number:
    Multiple
    Product Catalog Name:
    Multiple
  • Benzonase® Nuclease

    Document Type:
    Brochure
    Product Catalog Number:
    C134076
    Product Catalog Name:
    Benzonase® Nuclease and rLysozyme™ Solution for Extraction