Millipore Sigma Vibrant Logo
 

Search

 
Showing
Products (0)
Documents (4,003)
Site Content (0)

Narrow Your Results Use the filters below to refine your search

Document Type

  • (3,644)
  • (181)
  • (55)
  • (40)
  • (29)
  • Show More
Can't Find What You're Looking For?
Contact Customer Service

 
On-Demand Webinar Available: Cell Freezing Technologies and Disposable Bioreactors Towards a USP Process
Develop a Fully-Closed USP Process: Use Cell Freezing in Bags and SU Bioreactors
  • Recorded on May 22, 2014
  • Duration: 50 minutes
  • Neural stem cells confer unique pinwheel architecture to the ventricular surface in neurogenic regions of the adult brain. 18786414

    Neural stem cells (NSCs, B1 cells) are retained in the walls of the adult lateral ventricles but, unlike embryonic NSCs, are displaced from the ventricular zone (VZ) into the subventricular zone (SVZ) by ependymal cells. Apical and basal compartments, which in embryonic NSCs play essential roles in self-renewal and differentiation, are not evident in adult NSCs. Here we show that SVZ B1 cells in adult mice extend a minute apical ending to directly contact the ventricle and a long basal process ending on blood vessels. A closer look at the ventricular surface reveals a striking pinwheel organization specific to regions of adult neurogenesis. The pinwheel's core contains the apical endings of B1 cells and in its periphery two types of ependymal cells: multiciliated (E1) and a type (E2) characterized by only two cilia and extraordinarily complex basal bodies. These results reveal that adult NSCs retain fundamental epithelial properties, including apical and basal compartmentalization, significantly reshaping our understanding of this adult neurogenic niche.
    Document Type:
    Reference
    Product Catalog Number:
    Multiple
    Product Catalog Name:
    Multiple
  • Neural stem cells transplanted into intact brains as neurospheres form solid grafts composed of neurons, astrocytes and oligodendrocyte precursors. 15744380

    Neural stem cells (NSCs) are tissue-specific stem cells with self-renewal potential that can give rise to neurons and glia in vivo and in vitro. The aim of this study was to transplant NSCs as whole neurospheres into intact brain and assess the fate and phenotype of their progeny generated in vivo. We isolated NSCs from E14 foetal rat forebrains and cultured them in basic fibroblast and epidermal growth factor-supplemented serum-free medium in the form of neurospheres in vitro. Neurospheres were transplanted into the intact brains of 2 Wistar rats and after a period of 3 weeks, grafted brains were examined immunohistochemically. Neurospheres formed solid grafts that were found in the lateral ventricle and in the velum interpositum under the hippocampus. The majority of cells in the transplanted tissue were identified as beta-III-tubulin(+), NeuN(+), PanNF(+) and synaptophysin(+) neurons and were accumulated throughout the graft centre. GFAP(+) astrocytes were scattered throughout the entire graft and astrocyte processes delimited the outer and perivascular surfaces. A great number of NG2(+) oligodendrocyte precursors was detected. Nestin(+) endothelial cells were found to line capillaries growing in the transplant. These data indicate that nestin(+) NSCs prevailing in neurospheres differentiate following transplantation into nestin(-) neuronal and glial cells which confirms the multipotency of NSCs. Three weeks posttransplantation neuronal and astrocyte cells reached terminal differentiation (formation of synaptic vesicles and superficial and perivascular limiting membranes) while elements of oligodendroglial cell lineage remained immature. Grafting stem cells as non-dissociated neurospheres provide cells with favourable conditions which facilitate cell survival, proliferation and differentiation. However, in the intact brain, grafted neurosphere cells were not found to integrate with the brain parenchyma and formed a compact structure demarcated from its surroundings.
    Document Type:
    Reference
    Product Catalog Number:
    Multiple
    Product Catalog Name:
    Multiple
  • Mesenchymal stem cells modified with a single-chain antibody against EGFRvIII successfully inhibit the growth of human xenograft malignant glioma. 20305783

    BACKGROUND: Glioblastoma multiforme is the most lethal brain tumor with limited therapeutic options. Antigens expressed on the surface of malignant cells are potential targets for antibody-mediated gene/drug delivery. PRINCIPAL FINDINGS: In this study, we investigated the ability of genetically modified human mesenchymal stem cells (hMSCs) expressing a single-chain antibody (scFv) on their surface against a tumor specific antigen, EGFRvIII, to enhance the therapy of EGFRvIII expressing glioma cells in vivo. The growth of U87-EGFRvIII was specifically delayed in co-culture with hMSC-scFvEGFRvIII. A significant down-regulation was observed in the expression of pAkt in EGFRvIII expressing glioma cells upon culture with hMSC-scFvEGFRvIII vs. controls as well as in EGFRvIII expressing glioma cells from brain tumors co-injected with hMSC-scFvEGFRvIII in vivo. hMSC expressing scFvEGFRvIII also demonstrated several fold enhanced retention in EGFRvIII expressing flank and intracranial glioma xenografts vs. control hMSCs. The growth of U87-EGFRvIII flank xenografts was inhibited by 50% in the presence of hMSC-scFvEGFRvIII (p<0.05). Moreover, animals co-injected with U87-EGFRvIII and hMSC-scFvEGFRvIII intracranially showed significantly improved survival compared to animals injected with U87-EGFRvIII glioma cells alone or with control hMSCs. This survival was further improved when the same animals received an additional dosage of hMSC-scFvEGFRvIII two weeks after initial tumor implantation. Of note, EGFRvIII expressing brain tumors co-injected with hMSCs had a lower density of CD31 expressing blood vessels in comparison with control tumors, suggesting a possible role in tumor angiogenesis. CONCLUSIONS/SIGNIFICANCE: The results presented in this study illustrate that genetically modified MSCs may function as a novel therapeutic vehicle for malignant brain tumors.
    Document Type:
    Reference
    Product Catalog Number:
    07-276
    Product Catalog Name:
    Anti-PDGFRα Antibody
  • Mesenchymal stem cells derived from human exocrine pancreas express transcription factors implicated in beta-cell development. 18580448

    OBJECTIVES: Transplantation of in vitro generated islets or insulin-producing cells represents an attractive option to overcome organ shortage. The aim of this study was to isolate, expand, and characterize cells from human exocrine pancreas and analyze their potential to differentiate into beta cells. METHODS: Fibroblast-like cells growing out of human exocrine tissue were characterized by flow cytometry and by their capacity to differentiate into mesenchymal cell lineages. During cell expansion and after differentiation toward beta cells, expression of transcription factors of endocrine pancreatic progenitors was analyzed by reverse transcription polymerase chain reaction. RESULTS: Cells emerged from 14/18 human pancreatic exocrine fractions and were expanded up to 40 population doublings. These cells displayed surface antigens similar to mesenchymal stem cells from bone marrow. A culture of these cells in adipogenic and chondrogenic differentiation media allowed differentiation into adipocyte- and chondrocyte-like cells. During expansion, cells expressed transcription factors implicated in islet development such as Isl1, Nkx2.2, Nkx6.1, nestin, Ngn3, Pdx1, and NeuroD. Activin A and hepatocyte growth factor induced an expression of insulin, glucagon, and glucokinase. CONCLUSIONS: Proliferating cells with characteristics of mesenchymal stem cells and endocrine progenitors were isolated from exocrine tissue. Under specific conditions, these cells expressed little insulin. Human pancreatic exocrine tissue might thus be a source of endocrine cell progenitors.
    Document Type:
    Reference
    Product Catalog Number:
    AB5922
    Product Catalog Name:
    Anti-Nestin Antibody
  • Mesenchymal stem cells and neural crest stem cells from adult bone marrow: characterization of their surprising similarities and differences. 22349262

    The generation of neuronal cells from stem cells obtained from adult bone marrow is of significant clinical interest in order to design new cell therapy protocols for several neurological disorders. The recent identification in adult bone marrow of stem cells derived from the neural crest stem cells (NCSC) might explain the neuronal phenotypic plasticity shown by bone marrow cells. However, little information is available about the nature of these cells compared to mesenchymal stem cells (MSC), including their similarities and differences. In this paper, using transcriptomic as well as proteomic technologies, we compared NCSC to MSC and stromal nestin-positive cells, all of them isolated from adult bone marrow. We demonstrated that the nestin-positive cell population, which was the first to be described as able to differentiate into functional neurons, was a mixed population of NCSC and MSC. More interestingly, we demonstrated that MSC shared with NCSC the same ability to truly differentiate into Tuj1-positive cells when co-cultivated with paraformaldehyde-fixed cerebellar granule neurons. Altogether, those results suggest that both NCSC and MSC can be considered as important tools for cellular therapies in order to replace neurons in various neurological diseases.
    Document Type:
    Reference
    Product Catalog Number:
    AB1554
    Product Catalog Name:
    Anti-Nerve Growth Factor Receptor Antibody, p75
  • Neural stem cells exposed to BrdU lose their global DNA methylation and undergo astrocytic differentiation. 22379135

    Bromodeoxyuridine (5-bromo-2'-deoxyuridine, BrdU) is a halogenated nucleotide of low toxicity commonly used to monitor DNA replication. It is considered a valuable tool for in vitro and in vivo studies, including the detection of the small population of neural stem cells (NSC) in the mammalian brain. Here, we show that NSC grown in self-renewing conditions in vitro, when exposed to BrdU, lose the expression of stem cell markers like Nestin, Sox2 and Pax6 and undergo glial differentiation, strongly up-regulating the astrocytic marker GFAP. The onset of GFAP expression in BrdU exposed NSC was paralleled by a reduced expression of key DNA methyltransferases (DNMT) and a rapid loss of global DNA CpG methylation, as we determined by our specially developed analytic assay. Remarkably, a known DNA demethylating compound, 5-aza-2'-deoxycytidine (Decitabine), had similar effect on demethylation and differentiation of NSC. Since our key findings apply also to NSC derived from murine forebrain, our observations strongly suggest more caution in BrdU uses in stem cells research. We also propose that BrdU and its related substances may also open new opportunities for differentiation therapy in oncology.
    Document Type:
    Reference
    Product Catalog Number:
    MAB353
    Product Catalog Name:
    Anti-Nestin Antibody, clone rat-401