Endothelial cells induce cancer stem cell features in differentiated glioblastoma cells via bFGF. Fessler, E; Borovski, T; Medema, JP Molecular cancer
14
157
2015
Show Abstract
Glioblastoma multiforme (GBM) is a rapidly growing malignant brain tumor, which has been reported to be organized in a hierarchical fashion with cancer stem cells (CSCs) at the apex. Recent studies demonstrate that this hierarchy does not follow a one-way route but can be reverted with more differentiated cells giving rise to cells possessing CSC features. We investigated the role of tumor microvascular endothelial cells (tMVECs) in reverting differentiated glioblastoma cells to CSC-like cells.We made use of primary GBM lines and tMVECs. To ensure differentiation, CSC-enriched cultures were forced into differentiation using several stimuli and cultures consisting solely of differentiated cells were obtained by sorting on the oligodendrocyte marker O4. Reversion to the CSC state was assessed phenotypically by CSC marker expression and functionally by evaluating clonogenic and multilineage differentiation potential.Conditioned medium of tMVECs was able to replenish the CSC pool by phenotypically and functionally reverting differentiated GBM cells to the CSC state. Basic fibroblast growth factor (bFGF), secreted by tMVECs, recapitulated the effects of the conditioned medium in inducing re-expression of CSC markers and increasing neurosphere formation ability of differentiated GBM cells.Our findings demonstrate that the CSC-based hierarchy displays a high level of plasticity showing that differentiated GBM cells can acquire CSC features when placed in the right environment. These results point to the need to intersect the elaborate network of tMVECs and GBM CSCs for efficient elimination of GBM CSCs. | | 26282129
|
High molecular weight fibroblast growth factor-2 in the human heart is a potential target for prevention of cardiac remodeling. Santiago, JJ; McNaughton, LJ; Koleini, N; Ma, X; Bestvater, B; Nickel, BE; Fandrich, RR; Wigle, JT; Freed, DH; Arora, RC; Kardami, E PloS one
9
e97281
2014
Show Abstract
Fibroblast growth factor 2 (FGF-2) is a multifunctional protein synthesized as high (Hi-) and low (Lo-) molecular weight isoforms. Studies using rodent models showed that Hi- and Lo-FGF-2 exert distinct biological activities: after myocardial infarction, rat Lo-FGF-2, but not Hi-FGF-2, promoted sustained cardioprotection and angiogenesis, while Hi-FGF-2, but not Lo-FGF-2, promoted myocardial hypertrophy and reduced contractile function. Because there is no information regarding Hi-FGF-2 in human myocardium, we undertook to investigate expression, regulation, secretion and potential tissue remodeling-associated activities of human cardiac (atrial) Hi-FGF-2. Human patient-derived atrial tissue extracts, as well as pericardial fluid, contained Hi-FGF-2 isoforms, comprising, respectively, 53%(±20 SD) and 68% (±25 SD) of total FGF-2, assessed by western blotting. Human atrial tissue-derived primary myofibroblasts (hMFs) expressed and secreted predominantly Hi-FGF-2, at about 80% of total. Angiotensin II (Ang II) up-regulated Hi-FGF-2 in hMFs, via activation of both type 1 and type 2 Ang II receptors; the ERK pathway; and matrix metalloprotease-2. Treatment of hMFs with neutralizing antibodies selective for human Hi-FGF-2 (neu-AbHi-FGF-2) reduced accumulation of proteins associated with fibroblast-to-myofibroblast conversion and fibrosis, including α-smooth muscle actin, extra-domain A fibronectin, and procollagen. Stimulation of hMFs with recombinant human Hi-FGF-2 was significantly more potent than Lo-FGF-2 in upregulating inflammation-associated proteins such as pro-interleukin-1β and plasminogen-activator-inhibitor-1. Culture media conditioned by hMFs promoted cardiomyocyte hypertrophy, an effect that was prevented by neu-AbHi-FGF-2 in vitro. In conclusion, we have documented that Hi-FGF-2 represents a substantial fraction of FGF-2 in human cardiac (atrial) tissue and in pericardial fluid, and have shown that human Hi-FGF-2, unlike Lo-FGF-2, promotes deleterious (pro-fibrotic, pro-inflammatory, and pro-hypertrophic) responses in vitro. Selective targeting of Hi-FGF-2 production may, therefore, reduce pathological remodelling in the human heart. | Western Blotting | 24827991
|
Stromal heparan sulfate differentiates neuroblasts to suppress neuroblastoma growth. Knelson, EH; Gaviglio, AL; Nee, JC; Starr, MD; Nixon, AB; Marcus, SG; Blobe, GC The Journal of clinical investigation
124
3016-31
2014
Show Abstract
Neuroblastoma prognosis is dependent on both the differentiation state and stromal content of the tumor. Neuroblastoma tumor stroma is thought to suppress neuroblast growth via release of soluble differentiating factors. Here, we identified critical growth-limiting components of the differentiating stroma secretome and designed a potential therapeutic strategy based on their central mechanism of action. We demonstrated that expression of heparan sulfate proteoglycans (HSPGs), including TβRIII, GPC1, GPC3, SDC3, and SDC4, is low in neuroblasts and high in the Schwannian stroma. Evaluation of neuroblastoma patient microarray data revealed an association between TGFBR3, GPC1, and SDC3 expression and improved prognosis. Treatment of neuroblastoma cell lines with soluble HSPGs promoted neuroblast differentiation via FGFR1 and ERK phosphorylation, leading to upregulation of the transcription factor inhibitor of DNA binding 1 (ID1). HSPGs also enhanced FGF2-dependent differentiation, and the anticoagulant heparin had a similar effect, leading to decreased neuroblast proliferation. Dissection of individual sulfation sites identified 2-O, 3-O-desulfated heparin (ODSH) as a differentiating agent, and treatment of orthotopic xenograft models with ODSH suppressed tumor growth and metastasis without anticoagulation. These studies support heparan sulfate signaling intermediates as prognostic and therapeutic neuroblastoma biomarkers and demonstrate that tumor stroma biology can inform the design of targeted molecular therapeutics. | | 24937430
|
Type III TGF-β receptor promotes FGF2-mediated neuronal differentiation in neuroblastoma. Knelson, EH; Gaviglio, AL; Tewari, AK; Armstrong, MB; Mythreye, K; Blobe, GC The Journal of clinical investigation
123
4786-98
2013
Show Abstract
Growth factors and their receptors coordinate neuronal differentiation during development, yet their roles in the pediatric tumor neuroblastoma remain unclear. Comparison of mRNA from benign neuroblastic tumors and neuroblastomas revealed that expression of the type III TGF-β receptor (TGFBR3) decreases with advancing stage of neuroblastoma and this loss correlates with a poorer prognosis. Patients with MYCN oncogene amplification and low TGFBR3 expression were more likely to have an adverse outcome. In vitro, TβRIII expression was epigenetically suppressed by MYCN-mediated recruitment of histone deacetylases to regions of the TGFBR3 promoter. TβRIII bound FGF2 and exogenous FGFR1, which promoted neuronal differentiation of neuroblastoma cells. TβRIII and FGF2 cooperated to induce expression of the transcription factor inhibitor of DNA binding 1 via Erk MAPK. TβRIII-mediated neuronal differentiation suppressed cell proliferation in vitro as well as tumor growth and metastasis in vivo. These studies characterize a coreceptor function for TβRIII in FGF2-mediated neuronal differentiation, while identifying potential therapeutic targets and clinical biomarkers for neuroblastoma. | | 24216509
|
EphA2-induced angiogenesis in ewing sarcoma cells works through bFGF production and is dependent on caveolin-1. Sáinz-Jaspeado, M; Huertas-Martinez, J; Lagares-Tena, L; Martin Liberal, J; Mateo-Lozano, S; de Alava, E; de Torres, C; Mora, J; Del Muro, XG; Tirado, OM PloS one
8
e71449
2013
Show Abstract
Angiogenesis is the result of the combined activity of the tumor microenvironment and signaling molecules. The angiogenic switch is represented as an imbalance between pro- and anti-angiogenic factors and is a rate-limiting step in the development of tumors. Eph receptor tyrosine kinases and their membrane-anchored ligands, known as ephrins, constitute the largest receptor tyrosine kinase (RTK) subfamily and are considered a major family of pro-angiogenic RTKs. Ewing sarcoma (EWS) is a highly aggressive bone and soft tissue tumor affecting children and young adults. As other solid tumors, EWS are reliant on a functional vascular network for the delivery of nutrients and oxygen and for the removal of waste. Based on the biological roles of EphA2 in promoting angiogenesis, we explored the functional role of this receptor and its relationship with caveolin-1 (CAV1) in EWS angiogenesis. We demonstrated that lack of CAV1 results in a significant reduction in micro vascular density (MVD) on 3 different in vivo models. In vitro, this phenomenon correlated with inactivation of EphA2 receptor, lack of AKT response and downregulation of bFGF. We also demonstrated that secreted bFGF from EWS cells acted as chemoattractant for endothelial cells. Furthermore, interaction between EphA2 and CAV1 was necessary for the right localization and signaling of the receptor to produce bFGF through AKT and promote migration of endothelial cells. Finally, introduction of a dominant-negative form of EphA2 into EWS cells mostly reproduced the effects occurred by CAV1 silencing, strongly suggesting that the axis EphA2-CAV1 participates in the promotion of endothelial cell migration toward the tumors favoring EWS angiogenesis. | | 23951165
|
Preferential accumulation and export of high molecular weight FGF-2 by rat cardiac non-myocytes. Santiago, JJ; Ma, X; McNaughton, LJ; Nickel, BE; Bestvater, BP; Yu, L; Fandrich, RR; Netticadan, T; Kardami, E Cardiovascular research
89
139-47
2011
Show Abstract
fibroblast growth factor-2 (FGF-2), implicated in paracrine induction of cardiac hypertrophy, is translated as high molecular weight (Hi-FGF-2) and low molecular weight (Lo-FGF-2) isoforms. Paracrine activities are assigned to Lo-FGF-2, whereas Hi-FGF-2 is presumed to have nuclear functions. In this work, we re-examined the latter presumption by asking whether: cardiac non-myocytes (CNMs) accumulate and export Hi-FGF-2 in response to pro-hypertrophic [angiotensin II (Ang II)] stimuli; an unconventional secretory pathway requiring activated caspase-1 affects Hi-FGF2 export; and secreted Hi-FGF-2 is pro-hypertrophic.using neonatal rat heart-derived cultures and immunoblotting, we show that CNMs accumulated over 90% Hi-FGF-2, at levels at least five-fold higher than cardiomyocytes (CMs). Pro-hypertrophic agents (Ang II, endothelin-1, and isoproterenol) up-regulated CNM-associated Hi-FGF-2. The Ang II effect was mediated by Ang II receptor-1 but not Ang II receptor-2 as it was blocked by losartan but not PD123319. CNM-derived Hi-FGF-2 was detected in two extracellular pools: in conditioned medium from Ang II-stimulated CNMs and in association with the cell surface/matrix, eluted with a gentle 2 M NaCl wash of the cell monolayer. Conditioned medium from Ang II-treated CNMs increased neonatal CM size, an effect prevented by anti-FGF-2-neutralizing antibodies. The caspase-1 inhibitor YVAD prevented the Ang II-induced release of Hi-FGF-2 to both extracellular pools.CNMs are major producers of Hi-FGF-2, up-regulated by hypertrophic stimuli and exported to the extracellular environment by a mechanism requiring caspase-1 activity, suggesting a link to the innate immune response. Hi-FGF-2 is likely to promote paracrine induction of myocyte hypertrophy in vivo. | Western Blotting | 20696821
|
A novel mechanism of sequestering fibroblast growth factor 2 by glypican in lipid rafts, allowing skeletal muscle differentiation. Jaime Gutiérrez,Enrique Brandan Molecular and cellular biology
30
2010
Show Abstract
Heparan sulfate proteoglycans (HSPGs) are critical modulators of growth factor activities. Skeletal muscle differentiation is strongly inhibited by fibroblast growth factor 2 (FGF-2). We have shown that HSPGs present at the plasma membrane are expressed in myoblasts and are downregulated during muscle differentiation. An exception is glypican-1, which is present throughout the myogenic process. Myoblasts that do not express glypican-1 exhibit defective differentiation, with an increase in the receptor binding of FGF-2, concomitant with increased signaling. Glypican-1-deficient myoblasts show decreased expression of myogenin, the master gene that controls myogenesis, myosin, and the myoblast fusion index. Reversion of these defects was induced by expression of rat glypican-1. Glypican-1 is the only HSPG localized in lipid raft domains in myoblasts, resulting in the sequestration of FGF-2 away from FGF-2 receptors (FGFRs) located in nonraft domains. A chimeric glypican-1, containing syndecan-1 transmembrane and cytoplasmic domains, is located in nonraft domains interacting with FGFR-IV- and enhanced FGF-2-dependent signaling. Thus, glypican-1 acts as a positive regulator of muscle differentiation by sequestering FGF-2 in lipid rafts and preventing its binding and dependent signaling. Full Text Article | | 20100867
|
Membrane vesicles containing matrix metalloproteinase-9 and fibroblast growth factor-2 are released into the extracellular space from mouse mesoangioblast stem cells. Candela, Maria Elena, et al. J. Cell. Physiol., 224: 144-51 (2010)
2010
Show Abstract
Certain proteins, including fibroblast growth factor-2 (FGF-2) and matrix metalloproteinase-9 (MMP-9), have proved very effective in increasing the efficacy of mesoangioblast stem cell therapy in repairing damaged tissue. We provide the first evidence that mouse mesoangioblast stem cells release FGF-2 and MMP-9 in their active form through the production of membrane vesicles. These vesicles are produced and turned over continuously, but are stable for some time in the extracellular milieu. Mesoangioblasts shed membrane vesicles even under oxygen tensions that are lower than those typically used for cell culture and more like those of mouse tissues. These findings suggest that mesoangioblasts may themselves secrete paracrine signals and factors that make damaged tissues more amenable to cell therapy through the release of membrane vesicles. | | 20232295
|
Fibroblast growth factor-2 is a downstream mediator of phosphatidylinositol 3-kinase-Akt signaling in 14,15-epoxyeicosatrienoic acid-induced angiogenesis. Zhang, B; Cao, H; Rao, GN The Journal of biological chemistry
281
905-14
2006
Show Abstract
To determine the efficacy of cytochrome P450 2C9 metabolites of arachidonic acid, viz. 5,6-, 8,9-, 11,12-, and 14,15-epoxyeicosatrienoic acids (EETs), in inducing angiogenesis, we have studied their effects on human dermal microvascular endothelial cell (HDMVEC) tube formation and migration. All four EETs stimulated HDMVEC tube formation and migration in a dose-dependent manner. Because 14,15-EET was found to be slightly more efficacious than 5,6-, 8,9-, and 11,12-EETs in stimulating HDMVEC tube formation and migration, we next focused on elucidation of the signaling mechanisms underlying its angiogenic activity. 14,15-EET stimulated Akt and S6K1 phosphorylation in Src- and phosphatidylinositol 3-kinase (PI3K)-dependent manner in HDMVECs. Inhibition of Src and PI3K-Akt-mTOR signaling by both pharmacological and dominant-negative mutant approaches suppressed 14,15-EET-induced HDMVEC tube formation and migration in vitro and Matrigel plug angiogenesis in vivo. In addition, 14,15-EET induced the expression of fibroblast growth factor-2 (FGF-2) in Src- and PI3K-Akt-dependent and mTOR-independent manner in HDMVECs. Neutralizing anti-FGF-2 antibodies completely suppressed 14,15-EET-induced HDMVEC tube formation and migration in vitro and Matrigel plug angiogenesis in vivo. Together, these results show for the first time that Src and PI3K-Akt signaling via targeting in parallel with FGF-2 expression and mTOR-S6K1 activation plays an indispensable role in 14,15-EET-induced angiogenesis. | | 16286479
|
Postischemic intraventricular administration of FGF-2 expressing adenoviral vectors improves neurologic outcome and reduces infarct volume after transient focal cerebral ischemia in rats. Watanabe, T; Okuda, Y; Nonoguchi, N; Zhao, MZ; Kajimoto, Y; Furutama, D; Yukawa, H; Shibata, MA; Otsuki, Y; Kuroiwa, T; Miyatake, S Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism
24
1205-13
2004
Show Abstract
Fibroblast growth factor (FGF)-2 is a potent neurotrophic and angiogenic peptide. To examine possible protective effects of FGF-2 gene expression against transient focal cerebral ischemia in rats, a replication defective, recombinant adenovirus vector expressing FGF-2, was injected intraventricularly 2 hours after middle cerebral artery occlusion (MCAO). The treatment group showed significant recovery compared with the vehicle-treated groups in terms of serial neurologic severity scores over the 35 days after MCAO. Further, 2,3,5-triphenyltetrazolium chloride staining showed that FGF-2 gene transfer decreased infarct volume by 44% as compared with that in the vehicle-treated groups at 2 days after MCAO. The same tendency of gene transfer effects on infarct volume was confirmed at 35 days after MCAO with hematoxylin/eosin staining. Enzyme-linked immunosorbent assay revealed that FGF-2 concentration was increased significantly at 2 days after MCAO, not only in cerebrospinal fluid but also in cerebral substance in the lesioned and treated animals. These results suggested that FGF-2 gene transfer using these adenoviral vectors might be a useful modality for the treatment of occlusive cerebrovascular disease even after the onset of stroke. | | 15545913
|