Search

 
Showing
Products (0)
Documents (972)
Site Content (0)
Can't Find What You're Looking For?
Contact Customer Service

 
  • Subcellular localization of LGN during mitosis: evidence for its cortical localization in mitotic cell culture systems and its requirement for normal cell cycle progressi ... 12925752

    Mammalian LGN/AGS3 proteins and their Drosophila Pins orthologue are cytoplasmic regulators of G-protein signaling. In Drosophila, Pins localizes to the lateral cortex of polarized epithelial cells and to the apical cortex of neuroblasts where it plays important roles in their asymmetric division. Using overexpression studies in different cell line systems, we demonstrate here that, like Drosophila Pins, LGN can exhibit enriched localization at the cell cortex, depending on the cell cycle and the culture system used. We find that in WISH, PC12, and NRK but not COS cells, LGN is largely directed to the cell cortex during mitosis. Overexpression of truncated protein domains further identified the Galpha-binding C-terminal portion of LGN as a sufficient domain for cortical localization in cell culture. In mitotic COS cells that normally do not exhibit cortical LGN localization, LGN is redirected to the cell cortex upon overexpression of Galpha subunits of heterotrimeric G-proteins. The results also show that the cortical localization of LGN is dependent on microfilaments and that interfering with LGN function in cultured cell lines causes early disruption to cell cycle progression.
    Document Type:
    Reference
    Product Catalog Number:
    Multiple
    Product Catalog Name:
    Multiple
  • Evaluation of differentiated human bronchial epithelial cell culture systems for asthma research. 22287976

    The aim of the current study was to evaluate primary (human bronchial epithelial cells, HBEC) and non-primary (Calu-3, BEAS-2B, BEAS-2B R1) bronchial epithelial cell culture systems as air-liquid interface- (ALI-) differentiated models for asthma research. Ability to differentiate into goblet (MUC5AC+) and ciliated (β-Tubulin IV+) cells was evaluated by confocal imaging and qPCR. Expression of tight junction/adhesion proteins (ZO-1, E-Cadherin) and development of transepithelial electrical resistance (TEER) were assessed. Primary cells showed localised MUC5AC, β-Tubulin IV, ZO-1, and E-Cadherin and developed TEER with, however, a large degree of inter- and intradonor variation. Calu-3 cells developed a more reproducible TEER and a phenotype similar to primary cells although with diffuse β-Tubulin IV staining. BEAS-2B cells did not differentiate or develop tight junctions. These data highlight the challenges in working with primary cell models and the need for careful characterisation and selection of systems to answer specific research questions.
    Document Type:
    Reference
    Product Catalog Number:
    MAB3199Z
    Product Catalog Name:
    Anti-E-Cadherin Antibody, clone 67A4, Azide Free
  • A novel domain regulating degradation of the glomerular slit diaphragm protein podocin in cell culture systems. 23437316

    Mutations in the gene NPHS2 are the most common cause of hereditary steroid-resistant nephrotic syndrome. Its gene product, the stomatin family member protein podocin represents a core component of the slit diaphragm, a unique structure that bridges the space between adjacent podocyte foot processes in the kidney glomerulus. Dislocation and misexpression of slit diaphragm components have been described in the pathogenesis of acquired and hereditary nephrotic syndrome. However, little is known about mechanisms regulating cellular trafficking and turnover of podocin. Here, we discover a three amino acids-comprising motif regulating intracellular localization of podocin in cell culture systems. Mutations of this motif led to markedly reduced degradation of podocin. These findings give novel insight into the molecular biology of the slit diaphragm protein podocin, enabling future research to establish the biological relevance of podocin turnover and localization.
    Document Type:
    Reference
    Product Catalog Number:
    AB3792
    Product Catalog Name:
    Anti-V5 Epitope Tag Antibody
  • Matrigel-based sprouting endothelial cell culture system from mouse corpus cavernosum is potentially useful for the study of endothelial and erectile dysfunction related ... 22548733

    Introduction.  A proper cavernous endothelial cell culture system would be advantageous for the study of the pathophysiologic mechanisms involved in endothelial dysfunction and erectile dysfunction (ED). Aim.  To establish a nonenzymatic technique, which we termed the Matrigel-based sprouting endothelial cell culture system, for the isolation of mouse cavernous endothelial cells (MCECs) and an in vitro model that mimics in vivo situation for diabetes-induced ED. Methods.  For primary MCEC culture, mouse cavernous tissue was implanted into Matrigel and sprouting cells from the tissue were subcultivated. To establish an in vitro model for diabetes-induced ED, the primary cultured MCECs were exposed to a normal-glucose (5 mmoL) or a high-glucose (30 mmoL) condition for 48 hours. Main Outcome Measures.  The purity of isolated cells was determined by fluorescence-activated cell sorting analysis. MCECs incubated under the normal- or the high-glucose condition were used for Western blot, cyclic guanosine monophosphate (cGMP) quantification, and in vitro angiogenesis assay. Results.  We could consistently isolate high-purity MCECs (about 97%) with the Matrigel-based sprouting endothelial cell culture system. MCECs were subcultured up to the fifth passage and no significant changes were noted in endothelial cell morphology or purity. The phosphorylation of Akt and eNOS and the cGMP concentration were significantly lower in MCECs exposed to high glucose than in those exposed to normal glucose. MCECs exposed to the normal-glucose condition formed well-organized capillary-like structures, whereas derangements in tube formation were noted in MCECs exposed to high glucose. The protein expression of transforming growth factor-β1 (TGF-β1) and phospho-Smad2 was significantly increased by exposure to high glucose. Conclusion.  The Matrigel-based sprouting endothelial cell culture system is a simple, technically feasible, and reproducible technique for isolating pure cavernous endothelial cells in mice. An in vitro model for diabetic ED will be a valuable tool for evaluating the angiogenic potential of novel endogenous or synthetic modulators. Yin GN, Ryu J-K, Kwon M-H, Shin SH, Jin HR, Song K-M, Choi MJ, Kang D-Y, Kim WJ, and Suh J-K. Matrigel-based sprouting endothelial cell culture system from mouse corpus cavernosum is potentially useful for the study of endothelial and erectile dysfunction related to high-glucose exposure. J Sex Med 2012;9:1777-1789.
    Document Type:
    Reference
    Product Catalog Number:
    S7160
    Product Catalog Name:
    ApopTag® Fluorescein Direct In Situ Apoptosis Detection Kit
  • Optimized mouse ES cell culture system by suspension growth in a fully defined medium. 18536648

    Mouse and human embryonic stem (mES and hES) cells have become one of the most intensively studied primary cell types in biomedical research. However, culturing ES cells is notoriously labor intensive. We have optimized current ES cell culture methods by growing mES cells in suspension in a defined medium. This protocol is unsurpassed in time efficiency and typically requires only 20 min of effective hands-on time per week. This protocol maintains a very high degree of pluripotent cells partly by mechanical separation of spontaneously differentiating cells. mES cells can be cultured for extended periods (>6 months) without the loss of pluripotency markers. High passage (>20) adherent mES cultures containing contaminating differentiated cells can be rescued and enriched in undifferentiated ES cells.
    Document Type:
    Reference
    Product Catalog Number:
    Multiple
    Product Catalog Name:
    Multiple
  • Wnt5a-mediating neurogenesis of human adipose tissue-derived stem cells in a 3D microfluidic cell culture system. 21705075

    In stem cell biology, cell plasticity refers to the ability of stem cells to differentiate into a variety of cell lineages. Recently, cell plasticity has been used to refer to the ability of a given cell type to reversibly de-differentiate, re-differentiate, or transdifferentiate in response to specific stimuli. These processes are regulated by multiple intracellular and extracellular growth and differentiation factors, including low oxygen. Our recent study showed that 3D microfluidic cell culture induces activation of the Wnt5A/β-catenin signaling pathway in hATSCs (human Adipose Tissue-derived Stem Cells). This resulted in self renewal and transdifferentiation of hATSCs into neurons. To improve neurogenic potency of hATSCs in response to low oxygen and other unknown physical factors, we developed a gel-free 3D microfluidic cell culture system (3D-μFCCS). The functional structure was developed for the immobilization of 3D multi-cellular aggregates in a microfluidic channel without the use of a matrix on the chip. Growth of hATSCs neurosphere grown on a chip was higher than the growth of control cells grown in a culture dish. Induction of differentiation in the Chip system resulted in a significant increase in the induction of neuronal-like cell structures and the presentation of TuJ or NF160 positive long neuritis compared to control cells after active migration from the center of the microfluidic channel layer to the outside of the microfluidic channel layer. We also observed that the chip neurogenesis system induced a significantly higher level of GABA secreting neurons and, in addition, almost 60% of cells were GABA + cells. Finally, we observed that 1 month of after the transplantation of each cell type in a mouse SCI lesion, chip cultured and neuronal differentiated hATSCs exhibited the ability to effectively transdifferentiate into NF160 + motor neurons at a high ratio. Interestingly, our CHIP/PCR analysis revealed that HIF1α-induced hATSCs neurogenesis on the chip. This induction was a result of the direct binding of HIF1α to the regulatory regions of the Oct4 and β-catenin genes in nucleus. In the Chip culture of hATSCs that we developed, a low oxygen microenvironment was induced. The low oxygen level induced HIF1α expression, which resulted in increased expression of Wnt5A/β-catenin and Oct4 via the direct binding of HIF1α to the regulatory regions of β-catenin and Oct4.
    Document Type:
    Reference
    Product Catalog Number:
    17-371
    Product Catalog Name:
    EZ-ChIP™